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0. Introduction

(M, A, m): a probability space,

Ty: a Markovian semigroup on L2(m)

ie. 0<Ti;f<1for fe L?(m) and 0 < f < 1.

We assume that 73 is strong continuous, 7;1 =1,

Ty is also Markovian and 771 = 1.

Then, {13} can be extended (or restricted)
to the Markovian semigroup on LP(m) for p € [1, oc],
and the extension (or the restriction) of {T}}

is strong continuous and contractive for p € [1,00).
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o 1
Let (f) := /Mfdm for f € L1(m).
We are interested in the index:
, 1
Yp—q = —limsup —1og || Ty — m||p—q
t—oo T
where m means the linear operator f — (f)1 on LP(m)
and [|-|[p—q is the operator norm from LP(m) to L9(m).
In the case that T; is ergodic, vp—q the exponential

rate of the convergence.



The index yp—p is related to the spectra of 1; as fol-

lows: ()
Rad(T," —m) = e~ =l ¢ € [0, 00),

where Rad(A) is the radius of spectra of A
and Tt(p) means the linear operator T3 on LP(m).

Let 21, be the generator of {T\P)}.
If {Tt(p)} is an analytic semigroup, then
MO} = (TP — )\ {0}, € [0,00),
1
sup{ReM\; A € () \ {O}} = tl;ngoz log ||T: — m||p—p-

In this talk, we concern the relation among {yp—q}-
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Define for a linear operator A, on LP(m),

op(Ap) ;== {A € C; A — Ap is not injective on LP(m)}

UC(Ap)

={A e C; X— Ay is injective, but is not onto map,
and Ran(\ — Ap) is dense in LP(m)}

or(Ap)

={A e C, M- A, is injective, but is not onto map,
and Ran(\ — Ap) is not dense in LP(m)}

p(Ap) :={A e C; X— Ay is bijective on LF(m)}

op(Ap), oc(Ap), or(Ap) and p(Ap) are disjoint

and their union is equal to C.
6



1. Properties on 4

Proposition

Let p1,p2,91,92 € [1, 00].
Let r1,75 € [1,00] such that 36 € [0, 1] satisfying

1 1—46 0 1 1 -6 0
— = and — = :
1 P1 q1 T2 P2 q>2

Then,

Vri—ro 2 (1 - 9)7p1—>p2 + 0vq1—qo-

In particular, s — ~v1 5,1/, On [0, 1] is concave.




T heorem
The function p — vyp—p On [1,00] is continuous on (1,00).

If vp—p > 0 for some p € [1,00], then ~p—p > 0 for all

p € (1,00).

Remark
The function ~vp—p may not be continuous at p = 1, co.

Indeed, if m has the standard normal distribution and
{T} is the Ornstein-Uhlembeck semigroup,
then vp—p =1 for p € (1,00), vp—p =0 for p =1, c0.



1 1
Let p* be the conjugate exponent of p, i.e. —+—=1.
p P

T heorem
Assume that {T}} is self-adjoint on L2(m).

Then, vpsp = Ype_ypx TOr p € [1,00]
and p — vp—p iS NON-decreasing on [1, 2]
and non-increasing on [2, oo].

In particular, the maximum is attained at p = 2.




2. Relation between hypercontractivity
and p—q

If there exist p,qg € (1,00), K > 0 and C > 0 such that
p < q and

Tk fllg < Cllfllp, f € LP(m),

then for any 9/, ¢’ € (1,00) such that p’ < ¢/, there exist
K’'>0 and ¢’ > 0 and

/
1T fllgy < N fllys  f € LP(m).
q p

(If C =1, we can choose C'=1.)
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In this talk, we call {1} hyperbounded,
if there exist p,q € (1,00), K > 0 and C > 0 such that
p < q and

| Tx fllg < ClIfllp,  f € LP(m). (1)

If (1) holds with C =1 and some p, q, K,

then we call {1} hypercontractive.
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T heorem

T he following conditions are equivalent:
1. {T}} is hyperbounded.
2. Yp—q = 0 for some 1 < p < g < oco.

3. Yp—q = Y22 for all p,q € (1,00).

12




Proposition

| Tr fllr < ||fll2, f € L?(m)

for some K >0 and r > 2. Then, we have

1T f — (N2 < (= 1)7"Y2||fll2, e L2(m),
ITif = (Dl < V= Texp {—log v =T} |l
fe L?(m), te[0,00).
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T heorem

T he following conditions are equivalent:

1. {1} is hypercontractive.
2. Yp—q >0 for some 1 <p < g < oo.

3. Yp—q = v2—2 for all p,q € (1,00) and o, > 0.
4. There exist K > 0 and r > 0 such that

| Tkl|l2—r < oo and |[Tx —m|[2-2 < 1.

14




3. Sufficient conditions for LP-spectra to
be p-independent

Assume that {T7;} is hyperbounded.
Let A, be the generator of {1;} on LP(m)
for p € [1,00).
Assume that 2> is a normal operator,
e, ([A)* Ao = As(An)*.
In this section, we see that

the spectra of 2, are independent of p.
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Under the assumption, we can consider the spectral

decomposition of —%> as follows:
) e /C \dE}.

For a bounded C-valued measurable function ¢ on C,

define an operator ¢(—25) on L2(m) by

H(—2A2) = [ S(N\)E),

We can regard ¢(—2l»>) as a linear operator on LP(m).

16



Proposition

Let h be a C-valued bounded measurable function on C

which is analytic on the neighborhood around O
and define ¢(A) := h(1/X).
Then, ¢(—2) is a bounded operator on LP(m).

T heorem

Assume that {1;} is hyperbounded and %, is normal.

Then, o(—2Ug) = o(—2p) for g € (1,00).
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By a little more calculation, we have the following

theorem.

T heorem

Assume that {T7;} is hyperbounded and 2, is normal.
Then, op(—2A) = op(—Ap), oc(—Ax) = oc(—2Ap) and
or(—Ap) = 0 for p € (1,00).
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If there exists positive constants K and C such that

1Tk flloo < C|Ifll1,  f € LY(m),

then {T1%} is called ultracontractive.

T heorem

Assume that {7;} is ultracontractive and that 2, is a nor-
mal operator. Then, o(—2p) = o(—2p) for p € [1,00).

Moreover, op(—22) = op(—2Ap), gc(—Ap) = oc(—2Ap) and
or(—Ap) = 0 for p € [1,00).
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4. Properties on spectra on LP-spaces of
operators symmetric on the L2-space

Let A, be a densely defined, closed, and real operator
on LP(m) for p € [1,0).
Assume that {A,;p € [1,00)} are consistent,
i.e. if p > q, then Dom(Ap) C Dom(Ay)

and Apf = Aqf for f € Dom(Ay).
A Markovian semigroup {73} and its generators {,; p €
[1,00)} satisfy the assumption on {Ay,;p € [1,00)}.

Additionally assume that A, is self-adjoint on L2(m),
l.e. Ar = AE
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Lemma
O'r(Ap) = () for p < 2.

T heorem

We have the following.

1. op(Ap) Cop(Ag) for g <p.

2. or(Aq) C or(Ap) for g < p.

3. 0c(Ap) C oc(Ag) Uop(Ag) for ¢ < p < 2.
4. p(Aq) C p(Ap) for g <p < 2.

o(Ayp) is decreasing for p € [1,2]

and increasing for p € [2,00).
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Corollary

Let p € [2,0). Then the followings hold.
1. op(Ap) Uor(Ap) = op(Ay).
2. UC(Ap) — Gc(Ap*).

Corollary

O'p(Ap) C R for p € [2,0).

Since A» is a self-adjoint operator, by using the gen-
eral theory of self-adjoint operators on Hilbert spaces
it is obtained that o¢(A5) C R.

However, when p = 2, it does not always hold.
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5. Example that +,—, depends on p

Let p € [1,00).
Define a measure v on [0,00) by v(dz) := e *dx

and a differential operator 2, on LP(v) by

Dom(2p) := {f € W?P(v; C); f'(0) = 0},
2
Ap 1= % — %
Note that 2, is a self-adjoint operator on L2(v).
The self-adjointness on L2(v) implies
that {713} is analytic semigroup on LP(m) for p € (1, 00).
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Let p € [1,2].

Consider the linear transformation I defined by
(If)(z) = e %2 f().
Then, we have
> pe(a—D)zgy — [*° P
o 11f@Pel>™ e = | 7| f(2)Pv(de),

and f'(0) = 0 if and only if 3(If)(0)+ (If)'(0) =0.
Hence, I is an isometric transformation

from LP(v) to LP(vp), where vy 1= e(z=1)z gy
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Define a linear operator 2, on LP(&p,) by
~ 1
Dom (%) = {f € W2P(;€); 1£(0) + 1'(0) = 0},

- d2 1
P a2 4
Then, we have the following commutative diagram.
P(v) —B IP(v)
I i

A
LP(Dp) —> LP(Dp)
By this diagram we have
UD(Q[p) — Up(ﬁp)y UC(Q[p) — UC(ﬁlp)a Ur(mp) — Ur(ﬁp)-

Hence, to see the spectra of 2, it is sufficient to see
the spectra of 2y,.
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From now we cannot discuss the cases that 1 <p <2
and that p = 2 in the same way.

First we consider the case that 1 <p < 2.

Lemma
If 1 <p<?2, then

op(—2Ap) = {0}U {:13 +y;, z,y eR, x>

i< (i)
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Proof. Let A € C\ {z}. Then,

[ d? 1
— u+ —u = \u
1 dx2
5u(O) + 4/(0) = 0,

N\

\

if and only if
, w(z) = Cpe®V AFLE L o o—a/ A F1/4
ke (1/2 + /=X + 1/4) + C» (1/2 — /A F 1/4) = 0.

For u satisfying above,

u € LP(pp) if and only if
“pRe\/—)\—|—1/4—|—g—1 <0orCy=0".

(\/Z := /1et?/2 for z = ret? where r >0, 6 € (—m,7].)
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Lemma
If1<p<?2, then

~ . 9 2 2 p—1
p(—2p) DSz +iy; y*© > (—1) (a:— 3 \ {0}.

Proof. Let
dy(z) 1= (; — J—,\ i) ef“\/TJrl_ (; J—A i) e—l‘\/TJF%,

¥y () = e VA3,
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Define a C-valued function g, on [0,00) x [0,00) by

2

1
W/\gb/\(wﬁh(y), <y

gz, y) ‘=1 1
W/\Q\(y)w/\(w), y <z

Let Gy f(x) = /OOO gx(z,y) f(y)dy.
Then,

(A= (8} Gif =/ and SGAf(0)+(Grf)(0) =0.

By checking the boundedness of Gy on LP(ip)

we have the conclusion.
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Dp = ez gy, Ap = —= — —

Dom(il,) = { e W2P(5,: C): % £(0) + £/(0) = o} |

T heorem

Followings hold for 1 < p < 2.
1. op(—%Ap) = {0} U {:13 + iy, z,yeR, = > pp;zl

and |y| < (%— 1) \/:z: —pp;Ql},

2. oc(—2Ap) :{a:—l—iy; z,y € R, fBpr;zl

and Jy| = (3 - 1)z = 251} \ {0},

3. p(—2p) .
:{x-l—z'y; x,y € R, y2>(%—1) (x——)}\{O}
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d? d
v(de) = e Tdx, Ap= de2  dr
€T €T

Dom(2p) = {f € W2P(v;C); f'(0) = 0}.

T heorem

Followings hold for 1 <p < 2.
1. op(—2p) = {0} U{z +iy; 2,y €R, 2> P

2. oc(~2p) = {z+iy; z,y R, z> P

ond = (31 =~ 72)\ )

3. p(—2p) .
:{x—l—z’y; x,y € R, y2> (%—1> (l‘—p;zl)}\{o}

p

31




.///////// B

\

p=1 1<p<?2

op(—=Ap): blue,  oc(—Ap): red



Next we check o(—%205). Recall that

- d? 1
vo =dxr, U =—F5——

Dom(fly) = {f € W22(dr; ©); 5 f(0) + f(0) = 0} .

Lemma op(—2A>) = {0}.

Now we check oc(—25).

ogisc(—As) == {X € a(—Us); X is isolated point of o(—25),
A is an eigenvalue of finite multiplicity}

gess(—A2) 1= o (—A2) \ ogisc(—A2).

By the lemma above,
odisc(—22) = {0}, oc(—A2) = gess(—A2).
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Let & be the bilinear form associated with 2. Then,
~ 1 1

E(f9) = [, f'@g (@)dat [~ f(@)g()de—_f(0)g(0).
Let

FO(f,9) = [ f(0)g o+ [ f@)g()d

~

Then, & is a compact perturbation of £(0).
Hence, by Weyl's theorem we have the following lemma.

Lemma

~ ~ 1
O'ess(—Q[Q) = O‘ess(—Q[go)) — [Z, OO) .
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d2 1
Up =dz, Uo=—5——

Dom(fly) = {f c W2 2<d:c ©); 54(0) + 1'(0) = 0}.

T heorem .
op(—2) = {0}, oc(—2Up) = [Z’OO> -
d? d
dz) = e %dr, Wp= —r— —
v(dx) e T p = T g

Dom(2l,) = {f € W2P(v; C); f(0) = 0}.

T heorem

7o(~%2) = {0}, oe(—2) = | 1 00)
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o | =

p=2

op(—%2A>): blue,

Jc(—QLQ): red
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T heorem

For p € (2,00), we have the following.

1. op(—2Ap) = {0},
2. oc(—Up) = {a: + iy, z,y e R, x> p—1

p>|<2
Jr =25 (o,
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p=2
op(—2Ap): blue, oc(—2Ap): red,

1<p<?2

OO

|

‘\\\\\\\\\\\\\\\\\\\\\\\\\\

2<p<oo

or(—2Ap): green
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Since {T;} is analytic on LP(m) for p € (1, ),
1
sup{ReM\; X € o(—Up) \{0}} = _tll@o? 09 ||T: — m||p—p-

Hence, we obtain the following corollary.

Corollary
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Thank you for your attention!
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