
Stochastic Analysis and Applications 2012

Exponential convergence of Markovian

semigroups and their spectra on

Lp-spaces

(joint work with Ichiro Shigekawa)

Seiichiro Kusuoka

(Kyoto University)

1



0. Introduction

(M,B,m): a probability space,

Tt: a Markovian semigroup on L2(m)

i.e. 0 ≤ Ttf ≤ 1 for f ∈ L2(m) and 0 ≤ f ≤ 1.

We assume that Tt is strong continuous, Tt1 = 1,

T ∗
t is also Markovian and T ∗

t 1 = 1.

Then, {Tt} can be extended (or restricted)

to the Markovian semigroup on Lp(m) for p ∈ [1,∞],

and the extension (or the restriction) of {Tt}

is strong continuous and contractive for p ∈ [1,∞).
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Let ⟨f⟩ :=
∫
M
fdm for f ∈ L1(m).

We are interested in the index:

γp→q := − lim sup
t→∞

1

t
log ∥Tt −m∥p→q

where m means the linear operator f 7→ ⟨f⟩1 on Lp(m)

and ∥·∥p→q is the operator norm from Lp(m) to Lq(m).

In the case that Tt is ergodic, γp→q the exponential

rate of the convergence.
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The index γp→p is related to the spectra of Tt as fol-

lows:
Rad(T (p)

t −m) = e−γp→pt, t ∈ [0,∞),

where Rad(A) is the radius of spectra of A

and T
(p)
t means the linear operator Tt on Lp(m).

Let Ap be the generator of {T (p)
t }.

If {T (p)
t } is an analytic semigroup, then

etσ(Ap)\{0} = σ(T (p)
t −m) \ {0}, t ∈ [0,∞),

sup{Reλ;λ ∈ σ(Ap) \ {0}} = lim
t→∞

1

t
log ||Tt −m||p→p.

In this talk, we concern the relation among {γp→q}.
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Define for a linear operator Ap on Lp(m),

σp(Ap) := {λ ∈ C; λ−Ap is not injective on Lp(m)}

σc(Ap)

:= {λ ∈ C; λ−Ap is injective, but is not onto map,

and Ran(λ−Ap) is dense in Lp(m)}

σr(Ap)

:= {λ ∈ C; λ−Ap is injective, but is not onto map,

and Ran(λ−Ap) is not dense in Lp(m)}

ρ(Ap) := {λ ∈ C; λ−Ap is bijective on Lp(m)}

σp(Ap), σc(Ap), σr(Ap) and ρ(Ap) are disjoint

and their union is equal to C.
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1. Properties on γp→q

Proposition

Let p1, p2, q1, q2 ∈ [1,∞].

Let r1, r2 ∈ [1,∞] such that ∃θ ∈ [0,1] satisfying

1

r1
=

1− θ

p1
+

θ

q1
and

1

r2
=

1− θ

p2
+

θ

q2
.

Then,

γr1→r2 ≥ (1− θ)γp1→p2 + θγq1→q2.

In particular, s 7→ γ1/s→1/s on [0,1] is concave.
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Theorem

The function p 7→ γp→p on [1,∞] is continuous on (1,∞).

If γp→p > 0 for some p ∈ [1,∞], then γp→p > 0 for all

p ∈ (1,∞).

Remark

The function γp→p may not be continuous at p = 1,∞.

Indeed, if m has the standard normal distribution and

{Tt} is the Ornstein-Uhlembeck semigroup,

then γp→p = 1 for p ∈ (1,∞), γp→p = 0 for p = 1,∞.
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Let p∗ be the conjugate exponent of p, i.e.
1

p
+

1

p∗
= 1.

Theorem

Assume that {Tt} is self-adjoint on L2(m).

Then, γp→p = γp∗→p∗ for p ∈ [1,∞]

and p 7→ γp→p is non-decreasing on [1,2]

and non-increasing on [2,∞].

In particular, the maximum is attained at p = 2.
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2. Relation between hypercontractivity

and γp→q

If there exist p, q ∈ (1,∞), K ≥ 0 and C > 0 such that

p < q and

||TKf ||q ≤ C||f ||p, f ∈ Lp(m),

then for any p′, q′ ∈ (1,∞) such that p′ < q′, there exist

K′ ≥ 0 and C′ > 0 and

||TK′f ||q′ ≤ C′||f ||p′, f ∈ Lp
′
(m).

(If C = 1, we can choose C′ = 1.)
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In this talk, we call {Tt} hyperbounded,

if there exist p, q ∈ (1,∞), K ≥ 0 and C > 0 such that

p < q and

||TKf ||q ≤ C||f ||p, f ∈ Lp(m). (1)

If (1) holds with C = 1 and some p, q,K,

then we call {Tt} hypercontractive.

11



Theorem

The following conditions are equivalent:

1. {Tt} is hyperbounded.

2. γp→q ≥ 0 for some 1 < p < q <∞.

3. γp→q = γ2→2 for all p, q ∈ (1,∞).
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Proposition

||TKf ||r ≤ ||f ||2, f ∈ L2(m)

for some K > 0 and r > 2. Then, we have

||TKf − ⟨f⟩||2 ≤ (r − 1)−1/2||f ||2, f ∈ L2(m),

||Ttf − ⟨f⟩||2 ≤
√
r − 1exp

{
−
t

K
log

√
r − 1

}
||f ||2,

f ∈ L2(m), t ∈ [0,∞).
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Theorem

The following conditions are equivalent:

1. {Tt} is hypercontractive.

2. γp→q > 0 for some 1 < p < q <∞.

3. γp→q = γ2→2 for all p, q ∈ (1,∞) and γ2→2 > 0.

4. There exist K > 0 and r > 0 such that

||TK||2→r <∞ and ||TK −m||2→2 < 1.
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3. Sufficient conditions for Lp-spectra to

be p-independent

Assume that {Tt} is hyperbounded.

Let Ap be the generator of {Tt} on Lp(m)

for p ∈ [1,∞).

Assume that A2 is a normal operator,

i.e. (A2)
∗A2 = A2(A2)

∗.

In this section, we see that

the spectra of Ap are independent of p.
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Under the assumption, we can consider the spectral

decomposition of −A2 as follows:

−A2 =
∫
C
λdEλ.

For a bounded C-valued measurable function ϕ on C,

define an operator ϕ(−A2) on L2(m) by

ϕ(−A2) =
∫
C
ϕ(λ)dEλ.

We can regard ϕ(−A2) as a linear operator on Lp(m).
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Proposition

Let h be a C-valued bounded measurable function on C

which is analytic on the neighborhood around 0

and define ϕ(λ) := h(1/λ).

Then, ϕ(−A) is a bounded operator on Lp(m).

Theorem

Assume that {Tt} is hyperbounded and A2 is normal.

Then, σ(−Aq) = σ(−A2) for q ∈ (1,∞).
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By a little more calculation, we have the following

theorem.

Theorem

Assume that {Tt} is hyperbounded and A2 is normal.

Then, σp(−A2) = σp(−Ap), σc(−A2) = σc(−Ap) and

σr(−Ap) = ∅ for p ∈ (1,∞).
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If there exists positive constants K and C such that

||TKf ||∞ ≤ C||f ||1, f ∈ L1(m),

then {Tt} is called ultracontractive.

Theorem

Assume that {Tt} is ultracontractive and that A2 is a nor-

mal operator. Then, σ(−Ap) = σ(−A2) for p ∈ [1,∞).

Moreover, σp(−A2) = σp(−Ap), σc(−A2) = σc(−Ap) and

σr(−Ap) = ∅ for p ∈ [1,∞).
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4. Properties on spectra on Lp-spaces of
operators symmetric on the L2-space

Let Ap be a densely defined, closed, and real operator

on Lp(m) for p ∈ [1,∞).

Assume that {Ap; p ∈ [1,∞)} are consistent,

i.e. if p > q, then Dom(Ap) ⊂ Dom(Aq)

and Apf = Aqf for f ∈ Dom(Ap).

A Markovian semigroup {Tt} and its generators {Ap; p ∈
[1,∞)} satisfy the assumption on {Ap; p ∈ [1,∞)}.

Additionally assume that A2 is self-adjoint on L2(m),

i.e. A2 = A∗
2.
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Lemma

σr(Ap) = ∅ for p ≤ 2.

Theorem

We have the following.

1. σp(Ap) ⊂ σp(Aq) for q ≤ p.

2. σr(Aq) ⊂ σr(Ap) for q ≤ p.

3. σc(Ap) ⊂ σc(Aq) ∪ σp(Aq) for q ≤ p ≤ 2.

4. ρ(Aq) ⊂ ρ(Ap) for q ≤ p ≤ 2.

σ(Ap) is decreasing for p ∈ [1,2]

and increasing for p ∈ [2,∞).
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Corollary

Let p ∈ [2,∞). Then the followings hold.

1. σp(Ap) ∪ σr(Ap) = σp(Ap∗).

2. σc(Ap) = σc(Ap∗).

Corollary

σp(Ap) ⊂ R for p ∈ [2,∞).

Since A2 is a self-adjoint operator, by using the gen-

eral theory of self-adjoint operators on Hilbert spaces

it is obtained that σ(A2) ⊂ R.

However, when p ̸= 2, it does not always hold.

22



5. Example that γp→p depends on p

Let p ∈ [1,∞).

Define a measure ν on [0,∞) by ν(dx) := e−xdx

and a differential operator Ap on Lp(ν) by

Dom(Ap) :=
{
f ∈W2,p(ν;C); f ′(0) = 0

}
,

Ap :=
d2

dx2
−

d

dx
.

Note that A2 is a self-adjoint operator on L2(ν).

The self-adjointness on L2(ν) implies

that {Tt} is analytic semigroup on Lp(m) for p ∈ (1,∞).
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Let p ∈ [1,2].

Consider the linear transformation I defined by

(If)(x) := e−x/2f(x).

Then, we have

∫ ∞
0

|If(x)|pe(
p
2−1)xdx =

∫ ∞
0

|f(x)|pν(dx),

and f ′(0) = 0 if and only if 1
2(If)(0) + (If)′(0) = 0.

Hence, I is an isometric transformation

from Lp(ν) to Lp(ν̃p), where ν̃p := e(
p
2−1)xdx.
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Define a linear operator Ãp on Lp(ν̃p) by

Dom(Ãp) :=
{
f ∈W2,p(ν;C);

1

2
f(0) + f ′(0) = 0

}
,

Ãp :=
d2

dx2
−

1

4
.

Then, we have the following commutative diagram.

Lp(ν)
Ap−→ Lp(ν)

I ↓ ↓ I

Lp(ν̃p)
Ãp−→ Lp(ν̃p)

By this diagram we have

σp(Ap) = σp(Ãp), σc(Ap) = σc(Ãp), σr(Ap) = σr(Ãp).

Hence, to see the spectra of Ap, it is sufficient to see

the spectra of Ãp.
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From now we cannot discuss the cases that 1 ≤ p < 2

and that p = 2 in the same way.

First we consider the case that 1 ≤ p < 2.

Lemma

If 1 ≤ p < 2, then

σp(−Ãp) = {0}∪
x+ iy; x, y ∈ R, x >

p− 1

p2
,

|y| <
2
p
− 1

√√√√x−
p− 1

p2

 .
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Proof. Let λ ∈ C \
{
1
4

}
. Then,

−
d2

dx2
u+

1

4
u = λu

1

2
u(0) + u′(0) = 0,

if and only if
u(x) = C1e

x
√

−λ+1/4 + C2e
−x

√
−λ+1/4

C1

(
1/2+

√
−λ+1/4

)
+ C2

(
1/2−

√
−λ+1/4

)
= 0.

For u satisfying above,

u ∈ Lp(ν̃p) if and only if

“pRe
√
−λ+1/4+

p

2
− 1 < 0 or C1 = 0”.

(
√
z :=

√
reiθ/2 for z = reiθ where r ≥ 0, θ ∈ (−π, π].)
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Lemma

If 1 ≤ p < 2, then

ρ(−Ãp) ⊃

x+ iy; y2 >

2
p
− 1

2 x−
p− 1

p2


 \ {0}.

Proof. Let

ϕλ(x) :=

1
2
−

√√√√−λ+
1

4

 ex
√
−λ+1

4 −

1
2
+

√√√√−λ+
1

4

 e−x
√
−λ+1

4,

ψλ(x) := e−x
√
−λ+1

4,

Wλ := −2

√√√√−λ+
1

4

1
2
−

√√√√−λ+
1

4

 .
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Define a C-valued function gλ on [0,∞)× [0,∞) by

gλ(x, y) :=



1

Wλ
ϕλ(x)ψλ(y), x ≤ y

1

Wλ
ϕλ(y)ψλ(x), y ≤ x

Let Gλf(x) :=
∫ ∞
0

gλ(x, y)f(y)dy.

Then,

{
λ− (−Ãp)

}
Gλf = f, and

1

2
Gλf(0)+(Gλf)

′(0) = 0.

By checking the boundedness of Gλ on Lp(ν̃p)

we have the conclusion.
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ν̃p = e(
p
2−1)xdx, Ãp =

d2

dx2
−

1

4
,

Dom(Ãp) =
{
f ∈W2,p(ν̃p;C);

1

2
f(0) + f ′(0) = 0

}
.

Theorem

Followings hold for 1 ≤ p < 2.

1. σp(−Ãp) = {0} ∪
{
x+ iy; x, y ∈ R, x > p−1

p2

and |y| <
(
2
p − 1

)√
x− p−1

p2

}
,

2. σc(−Ãp) =
{
x+ iy; x, y ∈ R, x ≥ p−1

p2
,

and |y| =
(
2
p − 1

)√
x− p−1

p2

}
\ {0},

3. ρ(−Ãp)

=
{
x+ iy; x, y ∈ R, y2 >

(
2
p − 1

)2 (
x− p−1

p2

)}
\ {0}.
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ν(dx) = e−xdx, Ap =
d2

dx2
−

d

dx
,

Dom(Ap) =
{
f ∈W2,p(ν;C); f ′(0) = 0

}
.

Theorem

Followings hold for 1 ≤ p < 2.

1. σp(−Ap) = {0} ∪
{
x+ iy; x, y ∈ R, x > p−1

p2

and |y| <
(
2
p − 1

)√
x− p−1

p2

}
,

2. σc(−Ap) =
{
x+ iy; x, y ∈ R, x ≥ p−1

p2

and |y| =
(
2
p − 1

)√
x− p−1

p2

}
\ {0},

3. ρ(−Ap)

=
{
x+ iy; x, y ∈ R, y2 >

(
2
p − 1

)2 (
x− p−1

p2

)}
\ {0}.
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p = 1 1 < p < 2

σp(−Ap): blue, σc(−Ap): red
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Next we check σ(−Ã2). Recall that

ν̃2 = dx, Ã2 =
d2

dx2
−

1

4
,

Dom(Ã2) =
{
f ∈W2,2(dx;C);

1

2
f(0) + f ′(0) = 0

}
.

Lemma σp(−Ã2) = {0}.

Now we check σc(−Ã2).

σdisc(−Ã2) := {λ ∈ σ(−Ã2); λ is isolated point of σ(−Ã2),

λ is an eigenvalue of finite multiplicity}
σess(−Ã2) := σ(−Ã2) \ σdisc(−Ã2).

By the lemma above,

σdisc(−Ã2) = {0}, σc(−Ã2) = σess(−Ã2).
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Let Ẽ be the bilinear form associated with Ã2. Then,

Ẽ (f, g) =
∫ ∞
0

f ′(x)g′(x)dx+
1

4

∫ ∞
0

f(x)g(x)dx−
1

2
f(0)g(0).

Let

Ẽ (0)(f, g) =
∫ ∞
0

f ′(x)g′(x)dx+
1

4

∫ ∞
0

f(x)g(x)dx.

Then, Ẽ is a compact perturbation of Ẽ (0).

Hence, by Weyl’s theorem we have the following lemma.

Lemma

σess(−Ã2) = σess(−Ã
(0)
2 ) =

[
1

4
,∞

)
.
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ν̃2 = dx, Ã2 =
d2

dx2
−

1

4
,

Dom(Ã2) =
{
f ∈W2,2(dx;C);

1

2
f(0) + f ′(0) = 0

}
.

Theorem
σp(−Ã2) = {0}, σc(−Ã2) =

[
1

4
,∞

)
.

ν(dx) = e−xdx, Ap =
d2

dx2
−

d

dx
,

Dom(Ap) =
{
f ∈W2,p(ν;C); f ′(0) = 0

}
.

Theorem
σp(−A2) = {0}, σc(−A2) =

[
1

4
,∞

)
.
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1

4

p = 2

σp(−A2): blue, σc(−A2): red
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Theorem

For p ∈ (2,∞), we have the following.

1. σp(−Ap) = {0},

2. σc(−Ap) =
{
x+ iy; x, y ∈ R, x ≥ p∗−1

p∗2

and |y| =
(
2
p∗ − 1

)√
x− p∗−1

p∗2

}
\ {0},

3. σr(−Ap) =
{
x+ iy; x, y ∈ R, x > p∗−1

p∗2

and |y| <
(
2
p∗ − 1

)√
x− p∗−1

p∗2

}
,

4. ρ(−Ap)

=
{
x+ iy; x, y ∈ R, y2 >

(
2
p∗ − 1

)2 (
x− p∗−1

p∗2

)}
\ {0}.
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p = 1 1 < p < 2

1

4

p = 2 2 < p <∞

σp(−Ap): blue, σc(−Ap): red, σr(−Ap): green
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Since {Tt} is analytic on Lp(m) for p ∈ (1,∞),

sup{Reλ;λ ∈ σ(−Ap) \ {0}} = − lim
t→∞

1

t
log ||Tt−m||p→p.

Hence, we obtain the following corollary.

Corollary

γp→p =
p− 1

p2
, p ∈ [1,2],

γp→p =
p∗ − 1

(p∗)2
, p ∈ [2,∞].
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Thank you for your attention!
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