Stochastic Analysis and Applications 2012

Exponential convergence of Markovian semigroups and their spectra on L^{p}-spaces
(joint work with Ichiro Shigekawa)

Seiichiro Kusuoka
(Kyoto University)

0. Introduction

(M, \mathscr{B}, m): a probability space,
T_{t} : a Markovian semigroup on $L^{2}(m)$
i.e. $0 \leq T_{t} f \leq 1$ for $f \in L^{2}(m)$ and $0 \leq f \leq 1$.

We assume that T_{t} is strong continuous, $T_{t} \mathbf{1}=\mathbf{1}$,
T_{t}^{*} is also Markovian and $T_{t}^{*} \mathbf{1}=1$.

Then, $\left\{T_{t}\right\}$ can be extended (or restricted)
to the Markovian semigroup on $L^{p}(m)$ for $p \in[1, \infty]$, and the extension (or the restriction) of $\left\{T_{t}\right\}$
is strong continuous and contractive for $p \in[1, \infty)$.

Let $\langle f\rangle:=\int_{M} f d m$ for $f \in L^{1}(m)$.
We are interested in the index:

$$
\gamma_{p \rightarrow q}:=-\limsup _{t \rightarrow \infty} \frac{1}{t} \log \left\|T_{t}-m\right\|_{p \rightarrow q}
$$

where m means the linear operator $f \mapsto\langle f\rangle \mathbf{1}$ on $L^{p}(m)$ and $\|\cdot\|_{p \rightarrow q}$ is the operator norm from $L^{p}(m)$ to $L^{q}(m)$. In the case that T_{t} is ergodic, $\gamma_{p \rightarrow q}$ the exponential rate of the convergence.

The index $\gamma_{p \rightarrow p}$ is related to the spectra of T_{t} as follows:

$$
\operatorname{Rad}\left(T_{t}^{(p)}-m\right)=e^{-\gamma_{p \rightarrow p} t}, \quad t \in[0, \infty)
$$

where $\operatorname{Rad}(A)$ is the radius of spectra of A and $T_{t}^{(p)}$ means the linear operator T_{t} on $L^{p}(m)$.

Let \mathfrak{A}_{p} be the generator of $\left\{T_{t}^{(p)}\right\}$.
If $\left\{T_{t}^{(p)}\right\}$ is an analytic semigroup, then

$$
\begin{aligned}
& e^{t \sigma\left(\mathfrak{A}_{p}\right) \backslash\{0\}}=\sigma\left(T_{t}^{(p)}-m\right) \backslash\{0\}, \quad t \in[0, \infty) \\
& \sup \left\{\operatorname{Re} \lambda ; \lambda \in \sigma\left(\mathfrak{A}_{p}\right) \backslash\{0\}\right\}=\lim _{t \rightarrow \infty} \frac{1}{t} \log \left\|T_{t}-m\right\|_{p \rightarrow p}
\end{aligned}
$$

In this talk, we concern the relation among $\left\{\gamma_{p \rightarrow q}\right\}$.

Contents:

1. Properties on $\gamma_{p \rightarrow q}$,
2. Relation between hypercontractivity and $\gamma_{p \rightarrow q}$,
3. Sufficient conditions for L^{p}-spectra to be p-independent,
4. Properties on spectra on L^{p}-spaces
of operators symmetric on the L^{2}-space,
5. Example that $\gamma_{p \rightarrow p}$ depends on p.

Define for a linear operator A_{p} on $L^{p}(m)$,

$$
\sigma_{\mathfrak{p}}\left(A_{p}\right):=\left\{\lambda \in \mathbb{C} ; \lambda-A_{p} \text { is not injective on } L^{p}(m)\right\}
$$ $\sigma_{\mathrm{C}}\left(A_{p}\right)$

$:=\left\{\lambda \in \mathbb{C} ; \lambda-A_{p}\right.$ is injective, but is not onto map, and $\operatorname{Ran}\left(\lambda-A_{p}\right)$ is dense in $\left.L^{p}(m)\right\}$
$\sigma_{\mathrm{r}}\left(A_{p}\right)$
$:=\left\{\lambda \in \mathbb{C} ; \lambda-A_{p}\right.$ is injective, but is not onto map, and $\operatorname{Ran}\left(\lambda-A_{p}\right)$ is not dense in $\left.L^{p}(m)\right\}$
$\rho\left(A_{p}\right):=\left\{\lambda \in \mathbb{C} ; \lambda-A_{p}\right.$ is bijective on $\left.L^{p}(m)\right\}$
$\sigma_{\mathrm{p}}\left(A_{p}\right), \sigma_{\mathrm{C}}\left(A_{p}\right), \sigma_{\mathrm{r}}\left(A_{p}\right)$ and $\rho\left(A_{p}\right)$ are disjoint and their union is equal to \mathbb{C}.

1. Properties on $\gamma_{p \rightarrow q}$

Proposition

Let $p_{1}, p_{2}, q_{1}, q_{2} \in[1, \infty]$.
Let $r_{1}, r_{2} \in[1, \infty]$ such that $\exists \theta \in[0,1]$ satisfying

$$
\frac{1}{r_{1}}=\frac{1-\theta}{p_{1}}+\frac{\theta}{q_{1}} \quad \text { and } \quad \frac{1}{r_{2}}=\frac{1-\theta}{p_{2}}+\frac{\theta}{q_{2}} .
$$

Then,

$$
\gamma_{r_{1} \rightarrow r_{2}} \geq(1-\theta) \gamma_{p_{1} \rightarrow p_{2}}+\theta \gamma_{q_{1} \rightarrow q_{2}}
$$

In particular, $s \mapsto \gamma_{1 / s \rightarrow 1 / s}$ on $[0,1]$ is concave.

Theorem

The function $p \mapsto \gamma_{p \rightarrow p}$ on $[1, \infty]$ is continuous on $(1, \infty)$. If $\gamma_{p \rightarrow p}>0$ for some $p \in[1, \infty]$, then $\gamma_{p \rightarrow p}>0$ for all $p \in(1, \infty)$.

Remark

The function $\gamma_{p \rightarrow p}$ may not be continuous at $p=1, \infty$.
Indeed, if m has the standard normal distribution and $\left\{T_{t}\right\}$ is the Ornstein-Uhlembeck semigroup, then $\gamma_{p \rightarrow p}=1$ for $p \in(1, \infty), \gamma_{p \rightarrow p}=0$ for $p=1, \infty$.

Let p^{*} be the conjugate exponent of p, i.e. $\frac{1}{p}+\frac{1}{p^{*}}=1$.

Theorem

Assume that $\left\{T_{t}\right\}$ is self-adjoint on $L^{2}(m)$.
Then, $\gamma_{p \rightarrow p}=\gamma_{p^{*} \rightarrow p^{*}}$ for $p \in[1, \infty]$
and $p \mapsto \gamma_{p \rightarrow p}$ is non-decreasing on [1,2] and non-increasing on $[2, \infty]$.
In particular, the maximum is attained at $p=2$.

2. Relation between hypercontractivity

 and $\gamma_{p \rightarrow q}$If there exist $p, q \in(1, \infty), K \geq 0$ and $C>0$ such that $p<q$ and

$$
\left\|T_{K} f\right\|_{q} \leq C\|f\|_{p}, \quad f \in L^{p}(m),
$$

then for any $p^{\prime}, q^{\prime} \in(1, \infty)$ such that $p^{\prime}<q^{\prime}$, there exist $K^{\prime} \geq 0$ and $C^{\prime}>0$ and

$$
\left\|T_{K^{\prime}} f\right\|_{q^{\prime}} \leq C^{\prime}\|f\|_{p^{\prime}}, \quad f \in L^{p^{\prime}}(m) .
$$

(If $C=1$, we can choose $C^{\prime}=1$.)

In this talk, we call $\left\{T_{t}\right\}$ hyperbounded, if there exist $p, q \in(1, \infty), K \geq 0$ and $C>0$ such that $p<q$ and

$$
\begin{equation*}
\left\|T_{K} f\right\|_{q} \leq C\|f\|_{p}, \quad f \in L^{p}(m) \tag{1}
\end{equation*}
$$

If (1) holds with $C=1$ and some p, q, K, then we call $\left\{T_{t}\right\}$ hypercontractive.

Theorem

The following conditions are equivalent:

1. $\left\{T_{t}\right\}$ is hyperbounded.
2. $\gamma_{p \rightarrow q} \geq 0$ for some $1<p<q<\infty$.
3. $\gamma_{p \rightarrow q}=\gamma_{2 \rightarrow 2}$ for all $p, q \in(1, \infty)$.

Proposition

$$
\left\|T_{K} f\right\|_{r} \leq\|f\|_{2}, \quad f \in L^{2}(m)
$$

for some $K>0$ and $r>2$. Then, we have

$$
\begin{array}{r}
\left\|T_{K} f-\langle f\rangle\right\|_{2} \leq(r-1)^{-1 / 2}\|f\|_{2}, \quad f \in L^{2}(m) \\
\left\|T_{t} f-\langle f\rangle\right\|_{2} \leq \sqrt{r-1} \exp \left\{-\frac{t}{K} \log \sqrt{r-1}\right\}\|f\|_{2}, \\
f \in L^{2}(m), t \in[0, \infty)
\end{array}
$$

Theorem

The following conditions are equivalent:

1. $\left\{T_{t}\right\}$ is hypercontractive.
2. $\gamma_{p \rightarrow q}>0$ for some $1<p<q<\infty$.
3. $\gamma_{p \rightarrow q}=\gamma_{2 \rightarrow 2}$ for all $p, q \in(1, \infty)$ and $\gamma_{2 \rightarrow 2}>0$.
4. There exist $K>0$ and $r>0$ such that

$$
\left\|T_{K}\right\|_{2 \rightarrow r}<\infty \quad \text { and } \quad\left\|T_{K}-m\right\|_{2 \rightarrow 2}<1
$$

3. Sufficient conditions for L^{p}-spectra to

 be p-independentAssume that $\left\{T_{t}\right\}$ is hyperbounded.
Let \mathfrak{A}_{p} be the generator of $\left\{T_{t}\right\}$ on $L^{p}(m)$

$$
\text { for } p \in[1, \infty)
$$

Assume that \mathfrak{A}_{2} is a normal operator,
i.e. $\left(\mathfrak{A}_{2}\right)^{*} \mathfrak{A}_{2}=\mathfrak{A}_{2}\left(\mathfrak{A}_{2}\right)^{*}$.

In this section, we see that
the spectra of \mathfrak{A}_{p} are independent of p.

Under the assumption, we can consider the spectral decomposition of $-\mathfrak{A}_{2}$ as follows:

$$
-\mathfrak{A}_{2}=\int_{\mathbb{C}} \lambda d E_{\lambda}
$$

For a bounded \mathbb{C}-valued measurable function ϕ on \mathbb{C}, define an operator $\phi\left(-\mathfrak{A}_{2}\right)$ on $L^{2}(m)$ by

$$
\phi\left(-\mathfrak{A}_{2}\right)=\int_{\mathbb{C}} \phi(\lambda) d E_{\lambda}
$$

We can regard $\phi\left(-\mathfrak{A}_{2}\right)$ as a linear operator on $L^{p}(m)$.

Proposition

Let h be a \mathbb{C}-valued bounded measurable function on \mathbb{C}
which is analytic on the neighborhood around 0
and define $\phi(\lambda):=h(1 / \lambda)$.
Then, $\phi(-\mathfrak{A})$ is a bounded operator on $L^{p}(m)$.

Theorem

Assume that $\left\{T_{t}\right\}$ is hyperbounded and \mathfrak{A}_{2} is normal.
Then, $\sigma\left(-\mathfrak{A}_{q}\right)=\sigma\left(-\mathfrak{A}_{2}\right)$ for $q \in(1, \infty)$.

By a little more calculation, we have the following theorem.

Theorem

Assume that $\left\{T_{t}\right\}$ is hyperbounded and \mathfrak{A}_{2} is normal.
Then, $\sigma_{\mathrm{p}}\left(-\mathfrak{A}_{2}\right)=\sigma_{\mathrm{p}}\left(-\mathfrak{A}_{p}\right), \quad \sigma_{\mathrm{c}}\left(-\mathfrak{A}_{2}\right)=\sigma_{\mathrm{c}}\left(-\mathfrak{A}_{p}\right)$ and $\sigma_{\mathrm{r}}\left(-\mathfrak{A}_{p}\right)=\emptyset$ for $p \in(1, \infty)$.

If there exists positive constants K and C such that

$$
\left\|T_{K} f\right\|_{\infty} \leq C\|f\|_{1}, \quad f \in L^{1}(m)
$$

then $\left\{T_{t}\right\}$ is called ultracontractive.

Theorem

Assume that $\left\{T_{t}\right\}$ is ultracontractive and that \mathfrak{A}_{2} is a normal operator. Then, $\sigma\left(-\mathfrak{A}_{p}\right)=\sigma\left(-\mathfrak{A}_{2}\right)$ for $p \in[1, \infty)$. Moreover, $\sigma_{\mathrm{p}}\left(-\mathfrak{A}_{2}\right)=\sigma_{\mathrm{p}}\left(-\mathfrak{A}_{p}\right), \sigma_{\mathrm{C}}\left(-\mathfrak{A}_{2}\right)=\sigma_{\mathrm{C}}\left(-\mathfrak{A}_{p}\right)$ and $\sigma_{\mathrm{r}}\left(-\mathfrak{A}_{p}\right)=\emptyset$ for $p \in[1, \infty)$.

4. Properties on spectra on L^{p}-spaces of operators symmetric on the L^{2}-space

Let A_{p} be a densely defined, closed, and real operator on $L^{p}(m)$ for $p \in[1, \infty)$.
Assume that $\left\{A_{p} ; p \in[1, \infty)\right\}$ are consistent,
i.e. if $p>q$, then $\operatorname{Dom}\left(A_{p}\right) \subset \operatorname{Dom}\left(A_{q}\right)$

$$
\text { and } A_{p} f=A_{q} f \text { for } f \in \operatorname{Dom}\left(A_{p}\right)
$$

A Markovian semigroup $\left\{T_{t}\right\}$ and its generators $\left\{\mathfrak{A}_{p} ; p \in\right.$ $[1, \infty)\}$ satisfy the assumption on $\left\{A_{p} ; p \in[1, \infty)\right\}$.

Additionally assume that A_{2} is self-adjoint on $L^{2}(m)$, i.e. $A_{2}=A_{2}^{*}$.

Lemma

$$
\sigma_{\mathrm{r}}\left(A_{p}\right)=\emptyset \text { for } p \leq 2 .
$$

Theorem

We have the following.

1. $\sigma_{\mathrm{p}}\left(A_{p}\right) \subset \sigma_{\mathrm{p}}\left(A_{q}\right)$ for $q \leq p$.
2. $\sigma_{\mathrm{r}}\left(A_{q}\right) \subset \sigma_{\mathrm{r}}\left(A_{p}\right)$ for $q \leq p$.
3. $\sigma_{\subset}\left(A_{p}\right) \subset \sigma_{\subset}\left(A_{q}\right) \cup \sigma_{\mathrm{p}}\left(A_{q}\right)$ for $q \leq p \leq 2$.
4. $\rho\left(A_{q}\right) \subset \rho\left(A_{p}\right)$ for $q \leq p \leq 2$.
$\sigma\left(A_{p}\right)$ is decreasing for $p \in[1,2]$ and increasing for $p \in[2, \infty)$.

Corollary

Let $p \in[2, \infty)$. Then the followings hold.

1. $\sigma_{\mathrm{p}}\left(A_{p}\right) \cup \sigma_{\mathrm{r}}\left(A_{p}\right)=\sigma_{\mathrm{p}}\left(A_{p^{*}}\right)$.
2. $\sigma_{\mathrm{C}}\left(A_{p}\right)=\sigma_{\mathrm{C}}\left(A_{p^{*}}\right)$.

Corollary

$\sigma_{\mathrm{p}}\left(A_{p}\right) \subset \mathbb{R}$ for $p \in[2, \infty)$.

Since A_{2} is a self-adjoint operator, by using the general theory of self-adjoint operators on Hilbert spaces it is obtained that $\sigma\left(A_{2}\right) \subset \mathbb{R}$.
However, when $p \neq 2$, it does not always hold.

5. Example that $\gamma_{p \rightarrow p}$ depends on p

Let $p \in[1, \infty)$.
Define a measure ν on $[0, \infty)$ by $\nu(d x):=e^{-x} d x$ and a differential operator \mathfrak{A}_{p} on $L^{p}(\nu)$ by

$$
\begin{aligned}
\operatorname{Dom}\left(\mathfrak{A}_{p}\right) & :=\left\{f \in W^{2, p}(\nu ; \mathbb{C}) ; f^{\prime}(0)=0\right\} \\
\mathfrak{A}_{p} & :=\frac{d^{2}}{d x^{2}}-\frac{d}{d x}
\end{aligned}
$$

Note that \mathfrak{A}_{2} is a self-adjoint operator on $L^{2}(\nu)$.
The self-adjointness on $L^{2}(\nu)$ implies
that $\left\{T_{t}\right\}$ is analytic semigroup on $L^{p}(m)$ for $p \in(1, \infty)$.

Let $p \in[1,2]$.
Consider the linear transformation I defined by

$$
(I f)(x):=e^{-x / 2} f(x)
$$

Then, we have

$$
\int_{0}^{\infty}|I f(x)|^{p} e^{\left(\frac{p}{2}-1\right) x} d x=\int_{0}^{\infty}|f(x)|^{p} \nu(d x)
$$

and $f^{\prime}(0)=0$ if and only if $\frac{1}{2}(I f)(0)+(I f)^{\prime}(0)=0$.
Hence, I is an isometric transformation
from $L^{p}(\nu)$ to $L^{p}\left(\tilde{\nu}_{p}\right)$, where $\tilde{\nu}_{p}:=e^{\left(\frac{p}{2}-1\right) x} d x$.

Define a linear operator $\tilde{\mathfrak{A}}_{p}$ on $L^{p}\left(\widetilde{\nu}_{p}\right)$ by

$$
\begin{aligned}
\operatorname{Dom}\left(\tilde{\mathfrak{A}}_{p}\right) & :=\left\{f \in W^{2, p}(\nu ; \mathbb{C}) ; \frac{1}{2} f(0)+f^{\prime}(0)=0\right\} \\
\tilde{\mathfrak{A}}_{p} & :=\frac{d^{2}}{d x^{2}}-\frac{1}{4}
\end{aligned}
$$

Then, we have the following commutative diagram.

$$
\begin{array}{ccc}
L^{p}(\nu) & \xrightarrow{\mathfrak{A}_{p}} & L^{p}(\nu) \\
I \downarrow & & \downarrow I \\
L^{p}\left(\widetilde{\nu}_{p}\right) & \xrightarrow{\tilde{\mathfrak{A}}_{p}} & L^{p}\left(\tilde{\nu}_{p}\right)
\end{array}
$$

By this diagram we have

$$
\sigma_{\mathrm{p}}\left(\mathfrak{A}_{p}\right)=\sigma_{\mathrm{p}}\left(\tilde{\mathfrak{A}}_{p}\right), \sigma_{\mathrm{C}}\left(\mathfrak{A}_{p}\right)=\sigma_{\mathrm{C}}\left(\tilde{\mathfrak{A}}_{p}\right), \quad \sigma_{\mathrm{r}}\left(\mathfrak{A}_{p}\right)=\sigma_{\mathrm{r}}\left(\tilde{\mathfrak{A}}_{p}\right) .
$$

Hence, to see the spectra of \mathfrak{A}_{p}, it is sufficient to see the spectra of $\tilde{\mathfrak{A}}_{p}$.

From now we cannot discuss the cases that $1 \leq p<2$ and that $p=2$ in the same way.

First we consider the case that $1 \leq p<2$.

Lemma

If $1 \leq p<2$, then

$$
\begin{aligned}
\sigma_{\mathfrak{p}}\left(-\widetilde{\mathfrak{A}}_{p}\right)=\{0\} \cup\left\{x+i y ; x, y \in \mathbb{R}, x>\frac{p-1}{p^{2}}\right. \\
\left.|y|<\left(\frac{2}{p}-1\right) \sqrt{x-\frac{p-1}{p^{2}}}\right\} .
\end{aligned}
$$

Proof. Let $\lambda \in \mathbb{C} \backslash\left\{\frac{1}{4}\right\}$. Then,

$$
\left\{\begin{array}{c}
-\frac{d^{2}}{d x^{2}} u+\frac{1}{4} u=\lambda u \\
\frac{1}{2} u(0)+u^{\prime}(0)=0
\end{array}\right.
$$

if and only if

$$
\left\{\begin{array}{l}
u(x)=C_{1} e^{x \sqrt{-\lambda+1 / 4}}+C_{2} e^{-x \sqrt{-\lambda+1 / 4}} \\
C_{1}(1 / 2+\sqrt{-\lambda+1 / 4})+C_{2}(1 / 2-\sqrt{-\lambda+1 / 4})=0
\end{array}\right.
$$

For u satisfying above,

$$
\begin{aligned}
& u \in L^{p}\left(\widetilde{\nu}_{p}\right) \text { if and only if } \\
& \quad " p \operatorname{Re} \sqrt{-\lambda+1 / 4}+\frac{p}{2}-1<0 \text { or } C_{1}=0 \text { ". }
\end{aligned}
$$

$$
\left(\sqrt{z}:=\sqrt{r} e^{i \theta / 2} \text { for } z=r e^{i \theta} \text { where } r \geq 0, \theta \in(-\pi, \pi] .\right)
$$

Lemma

$$
\text { If } 1 \leq p<2 \text {, then }
$$

$$
\rho\left(-\widetilde{\mathfrak{A}}_{p}\right) \supset\left\{x+i y ; y^{2}>\left(\frac{2}{p}-1\right)^{2}\left(x-\frac{p-1}{p^{2}}\right)\right\} \backslash\{0\} .
$$

Proof. Let

$$
\begin{aligned}
\phi_{\lambda}(x) & :=\left(\frac{1}{2}-\sqrt{-\lambda+\frac{1}{4}}\right) e^{x \sqrt{-\lambda+\frac{1}{4}}}-\left(\frac{1}{2}+\sqrt{-\lambda+\frac{1}{4}}\right) e^{-x \sqrt{-\lambda+\frac{1}{4}}} \\
\psi_{\lambda}(x) & :=e^{-x \sqrt{-\lambda+\frac{1}{4}}} \\
W_{\lambda} & :=-2 \sqrt{-\lambda+\frac{1}{4}\left(\frac{1}{2}-\sqrt{-\lambda+\frac{1}{4}}\right)} .
\end{aligned}
$$

Define a \mathbb{C}-valued function g_{λ} on $[0, \infty) \times[0, \infty)$ by

$$
g_{\lambda}(x, y):= \begin{cases}\frac{1}{W_{\lambda}} \phi_{\lambda}(x) \psi_{\lambda}(y), & x \leq y \\ \frac{1}{W_{\lambda}} \phi_{\lambda}(y) \psi_{\lambda}(x), & y \leq x\end{cases}
$$

Let $G_{\lambda} f(x):=\int_{0}^{\infty} g_{\lambda}(x, y) f(y) d y$.
Then,
$\left\{\lambda-\left(-\tilde{\mathfrak{A}}_{p}\right)\right\} G_{\lambda} f=f, \quad$ and $\quad \frac{1}{2} G_{\lambda} f(0)+\left(G_{\lambda} f\right)^{\prime}(0)=0$.
By checking the boundedness of G_{λ} on $L^{p}\left(\tilde{\nu}_{p}\right)$
we have the conclusion.
$\tilde{\nu}_{p}=e^{\left(\frac{p}{2}-1\right) x} d x, \quad \tilde{\mathfrak{A}}_{p}=\frac{d^{2}}{d x^{2}}-\frac{1}{4}$,
$\operatorname{Dom}\left(\widetilde{\mathfrak{A}}_{p}\right)=\left\{f \in W^{2, p}\left(\tilde{\nu}_{p} ; \mathbb{C}\right) ; \frac{1}{2} f(0)+f^{\prime}(0)=0\right\}$.

Theorem

Followings hold for $1 \leq p<2$.

$$
\begin{aligned}
& \text { 1. } \sigma_{\mathfrak{p}}\left(-\widetilde{\mathfrak{A}}_{p}\right)=\{0\} \cup\left\{x+i y ; x, y \in \mathbb{R}, x>\frac{p-1}{p^{2}}\right. \\
& \text { 2. } \sigma_{\mathrm{C}}\left(-\widetilde{\mathfrak{A}}_{p}\right)=\left\{x+i y ; x, y \in \mathbb{R}, x \geq \frac{p-1}{p^{2}}\right. \\
& \quad \text { and }|y|<\left(\frac{2}{p}-1\right) \sqrt{\left.x-\frac{p-1}{p^{2}}\right\}} \\
& \left.\quad \text { and }|y|=\left(\frac{2}{p}-1\right) \sqrt{x-\frac{p-1}{p^{2}}}\right\} \backslash\{0\}
\end{aligned}
$$

3. $\rho\left(-\tilde{\mathfrak{A}}_{p}\right)$

$$
=\left\{x+i y ; x, y \in \mathbb{R}, y^{2}>\left(\frac{2}{p}-1\right)^{2}\left(x-\frac{p-1}{p^{2}}\right)\right\} \backslash\{0\}
$$

$$
\begin{aligned}
& \nu(d x)=e^{-x} d x, \quad \mathfrak{A}_{p}=\frac{d^{2}}{d x^{2}}-\frac{d}{d x} \\
& \operatorname{Dom}\left(\mathfrak{A}_{p}\right)=\left\{f \in W^{2, p}(\nu ; \mathbb{C}) ; f^{\prime}(0)=0\right\}
\end{aligned}
$$

Theorem

Followings hold for $1 \leq p<2$.

1. $\sigma_{\mathfrak{p}}\left(-\mathfrak{A}_{p}\right)=\{0\} \cup\left\{x+i y ; x, y \in \mathbb{R}, x>\frac{p-1}{p^{2}}\right.$ and $\left.|y|<\left(\frac{2}{p}-1\right) \sqrt{x-\frac{p-1}{p^{2}}}\right\}$,
2. $\sigma_{\mathrm{C}}\left(-\mathfrak{A}_{p}\right)=\left\{x+i y ; x, y \in \mathbb{R}, x \geq \frac{p-1}{p^{2}}\right.$

$$
\text { and } \left.|y|=\left(\frac{2}{p}-1\right)^{p} \sqrt{x-\frac{p-1}{p^{2}}}\right\} \backslash\{0\}
$$

3. $\rho\left(-\mathfrak{A}_{p}\right)$

$$
=\left\{x+i y ; x, y \in \mathbb{R}, y^{2}>\left(\frac{2}{p}-1\right)^{2}\left(x-\frac{p-1}{p^{2}}\right)\right\} \backslash\{0\}
$$

Next we check $\sigma\left(-\tilde{\mathfrak{A}}_{2}\right)$. Recall that
$\tilde{\nu}_{2}=d x, \quad \tilde{\mathfrak{A}}_{2}=\frac{d^{2}}{d x^{2}}-\frac{1}{4}$,
$\operatorname{Dom}\left(\tilde{\mathfrak{A}}_{2}\right)=\left\{f \in W^{2,2}(d x ; \mathbb{C}) ; \frac{1}{2} f(0)+f^{\prime}(0)=0\right\}$.

Lemma $\sigma_{\mathfrak{p}}\left(-\tilde{\mathfrak{A}}_{2}\right)=\{0\}$.

Now we check $\sigma_{\mathrm{C}}\left(-\widetilde{\mathfrak{A}}_{2}\right)$.
$\sigma_{\text {disc }}\left(-\widetilde{\mathfrak{A}}_{2}\right):=\left\{\lambda \in \sigma\left(-\widetilde{\mathfrak{A}}_{2}\right) ; \lambda\right.$ is isolated point of $\sigma\left(-\widetilde{\mathfrak{A}}_{2}\right)$,
λ is an eigenvalue of finite multiplicity

$$
\sigma_{\mathrm{ess}}\left(-\tilde{\mathfrak{A}}_{2}\right):=\sigma\left(-\tilde{\mathfrak{A}}_{2}\right) \backslash \sigma_{\mathrm{disc}}\left(-\tilde{\mathfrak{A}}_{2}\right)
$$

By the lemma above,

$$
\sigma_{\mathrm{disc}}\left(-\tilde{\mathfrak{A}}_{2}\right)=\{0\}, \quad \sigma_{\mathrm{c}}\left(-\tilde{\mathfrak{A}}_{2}\right)=\sigma_{\mathrm{ess}}\left(-\widetilde{\mathfrak{A}}_{2}\right)
$$

Let $\widetilde{\mathscr{E}}$ be the bilinear form associated with $\widetilde{\mathfrak{A}}_{2}$. Then,

$$
\widetilde{\mathscr{E}}(f, g)=\int_{0}^{\infty} f^{\prime}(x) g^{\prime}(x) d x+\frac{1}{4} \int_{0}^{\infty} f(x) g(x) d x-\frac{1}{2} f(0) g(0)
$$

Let

$$
\tilde{\mathscr{E}}^{(0)}(f, g)=\int_{0}^{\infty} f^{\prime}(x) g^{\prime}(x) d x+\frac{1}{4} \int_{0}^{\infty} f(x) g(x) d x
$$

Then, $\widetilde{\mathscr{E}}$ is a compact perturbation of $\widetilde{\mathscr{E}}(0)$.
Hence, by Weyl's theorem we have the following lemma.

Lemma

$$
\sigma_{\mathrm{ess}}\left(-\tilde{\mathfrak{A}}_{2}\right)=\sigma_{\mathrm{ess}}\left(-\tilde{\mathfrak{A}}_{2}^{(0)}\right)=\left[\frac{1}{4}, \infty\right)
$$

$\tilde{\nu}_{2}=d x, \quad \tilde{\mathfrak{A}}_{2}=\frac{d^{2}}{d x^{2}}-\frac{1}{4}$,
$\operatorname{Dom}\left(\tilde{\mathfrak{A}}_{2}\right)=\left\{f \in W^{2,2}(d x ; \mathbb{C}) ; \frac{1}{2} f(0)+f^{\prime}(0)=0\right\}$.
Theorem

$$
\begin{aligned}
& \sigma_{\mathfrak{p}}\left(-\tilde{\mathfrak{A}}_{2}\right)=\{0\}, \quad \sigma_{c}\left(-\tilde{\mathfrak{A}}_{2}\right)=\left[\frac{1}{4}, \infty\right) . \\
& \nu(d x)=e^{-x} d x, \quad \mathfrak{A}_{p}=\frac{d^{2}}{d x^{2}}-\frac{d}{d x}, \\
& \operatorname{Dom}\left(\mathfrak{A}_{p}\right)=\left\{f \in W^{2, p}(\nu ; \mathbb{C}) ; f^{\prime}(0)=0\right\} .
\end{aligned}
$$

Theorem

$$
\sigma_{\mathfrak{p}}\left(-\mathfrak{A}_{2}\right)=\{0\}, \quad \sigma_{c}\left(-\mathfrak{A}_{2}\right)=\left[\frac{1}{4}, \infty\right) .
$$

$$
\sigma_{\mathrm{p}}\left(-\mathfrak{A}_{2}\right): \text { blue, } \quad \sigma_{\mathrm{C}}\left(-\mathfrak{A}_{2}\right): \text { red }
$$

Theorem

For $p \in(2, \infty)$, we have the following.

1. $\sigma_{\mathrm{p}}\left(-\mathfrak{A}_{p}\right)=\{0\}$,
2. $\sigma_{\mathrm{C}}\left(-\mathfrak{A}_{p}\right)=\left\{x+i y ; x, y \in \mathbb{R}, x \geq \frac{p^{*}-1}{p^{* 2}}\right.$

$$
\text { and } \left.|y|=\left(\frac{2}{p^{*}}-1\right) \sqrt{x-\frac{p^{*}-1}{p^{* 2}}}\right\} \backslash\{0\}
$$

3. $\sigma_{\mathrm{r}}\left(-\mathfrak{A}_{p}\right)=\left\{x+i y ; x, y \in \mathbb{R}, x>\frac{p^{*}-1}{p^{* 2}}\right.$

$$
\text { and } \left.|y|<\left(\frac{2}{p^{*}}-1\right) \sqrt{x-\frac{p^{*}-1}{p^{* 2}}}\right\}
$$

4. $\rho\left(-\mathfrak{A}_{p}\right)$

$$
=\left\{x+i y ; x, y \in \mathbb{R}, y^{2}>\left(\frac{2}{p^{*}}-1\right)^{2}\left(x-\frac{p^{*}-1}{p^{* 2}}\right)\right\} \backslash\{0\} .
$$

$\sigma_{\mathrm{p}}\left(-\mathfrak{A}_{p}\right)$: blue, $\quad \sigma_{\mathrm{C}}\left(-\mathfrak{A}_{p}\right)$: red, $\quad \sigma_{\mathrm{r}}\left(-\mathfrak{A}_{p}\right)$: green

Since $\left\{T_{t}\right\}$ is analytic on $L^{p}(m)$ for $p \in(1, \infty)$,
$\sup \left\{\operatorname{Re} \lambda ; \lambda \in \sigma\left(-\mathfrak{A}_{p}\right) \backslash\{0\}\right\}=-\lim _{t \rightarrow \infty} \frac{1}{t} \log \left\|T_{t}-m\right\|_{p \rightarrow p}$.
Hence, we obtain the following corollary.
Corollary

$$
\begin{aligned}
\gamma_{p \rightarrow p} & =\frac{p-1}{p^{2}}, p \in[1,2] \\
\gamma_{p \rightarrow p} & =\frac{p^{*}-1}{\left(p^{*}\right)^{2}}, p \in[2, \infty] .
\end{aligned}
$$

Thank you for your attention!

