Stochastic Analysis and Applications 2012

Exponential convergence of Markovian semigroups and their spectra on L^p -spaces

(joint work with Ichiro Shigekawa)

Seiichiro Kusuoka (Kyoto University)

0. Introduction

 (M, \mathscr{B}, m) : a probability space,

 T_t : a Markovian semigroup on $L^2(m)$

i.e. $0 \leq T_t f \leq 1$ for $f \in L^2(m)$ and $0 \leq f \leq 1$.

We assume that T_t is strong continuous, $T_t \mathbf{1} = \mathbf{1}$, T_t^* is also Markovian and $T_t^* \mathbf{1} = \mathbf{1}$.

Then, $\{T_t\}$ can be extended (or restricted) to the Markovian semigroup on $L^p(m)$ for $p \in [1, \infty]$, and the extension (or the restriction) of $\{T_t\}$ is strong continuous and contractive for $p \in [1, \infty)$.

Let
$$\langle f \rangle := \int_M f dm$$
 for $f \in L^1(m)$.
We are interested in the index:

$$\gamma_{p \to q} := -\limsup_{t \to \infty} \frac{1}{t} \log ||T_t - m||_{p \to q}$$

where m means the linear operator $f \mapsto \langle f \rangle 1$ on $L^p(m)$ and $\|\cdot\|_{p \to q}$ is the operator norm from $L^p(m)$ to $L^q(m)$. In the case that T_t is ergodic, $\gamma_{p \to q}$ the exponential rate of the convergence. The index $\gamma_{p \to p}$ is related to the spectra of T_t as follows:

$$\mathsf{Rad}(T_t^{(p)} - m) = e^{-\gamma_{p \to p}t}, \quad t \in [0, \infty),$$

where $\operatorname{Rad}(A)$ is the radius of spectra of Aand $T_t^{(p)}$ means the linear operator T_t on $L^p(m)$.

Let
$$\mathfrak{A}_p$$
 be the generator of $\{T_t^{(p)}\}$.
If $\{T_t^{(p)}\}$ is an analytic semigroup, then
 $e^{t\sigma(\mathfrak{A}_p)\setminus\{0\}} = \sigma(T_t^{(p)} - m)\setminus\{0\}, \quad t \in [0,\infty),$
 $\sup\{\operatorname{Re}\lambda; \lambda \in \sigma(\mathfrak{A}_p)\setminus\{0\}\} = \lim_{t\to\infty} \frac{1}{t}\log||T_t - m||_{p\to p}.$

In this talk, we concern the relation among $\{\gamma_{p\to q}\}$.

Contents:

- 1. Properties on $\gamma_{p
 ightarrow q}$,
- 2. Relation between hypercontractivity and $\gamma_{p \rightarrow q}$,
- 3. Sufficient conditions for L^p -spectra to be p-independent,
- 4. Properties on spectra on L^p -spaces

of operators symmetric on the L^2 -space,

5. Example that $\gamma_{p \to p}$ depends on p.

Define for a linear operator A_p on $L^p(m)$,

 $\sigma_{\mathsf{D}}(A_p) := \{\lambda \in \mathbb{C}; \lambda - A_p \text{ is not injective on } L^p(m)\}$ $\sigma_{\mathsf{C}}(A_p)$ $:= \{\lambda \in \mathbb{C}; \lambda - A_p \text{ is injective, but is not onto map,}\}$ and Ran $(\lambda - A_p)$ is dense in $L^p(m)$ $\sigma_{\mathsf{r}}(A_p)$ $:= \{\lambda \in \mathbb{C}; \lambda - A_p \text{ is injective, but is not onto map,}\}$ and Ran $(\lambda - A_p)$ is not dense in $L^p(m)$ $\rho(A_p) := \{\lambda \in \mathbb{C}; \lambda - A_p \text{ is bijective on } L^p(m)\}$ $\sigma_{\mathsf{p}}(A_p), \sigma_{\mathsf{c}}(A_p), \sigma_{\mathsf{r}}(A_p) \text{ and } \rho(A_p) \text{ are disjoint}$ and their union is equal to \mathbb{C} .

1. Properties on $\gamma_{p \to q}$

Proposition

Let $p_1, p_2, q_1, q_2 \in [1, \infty]$. Let $r_1, r_2 \in [1, \infty]$ such that $\exists \theta \in [0, 1]$ satisfying $\frac{1}{r_1} = \frac{1-\theta}{p_1} + \frac{\theta}{q_1}$ and $\frac{1}{r_2} = \frac{1-\theta}{p_2} + \frac{\theta}{q_2}$. Then, $\gamma_{r_1 \to r_2} \ge (1 - \theta) \gamma_{p_1 \to p_2} + \theta \gamma_{q_1 \to q_2}.$ In particular, $s \mapsto \gamma_{1/s \to 1/s}$ on [0, 1] is concave.

<u>Theorem</u>

The function $p \mapsto \gamma_{p \to p}$ on $[1, \infty]$ is continuous on $(1, \infty)$. If $\gamma_{p \to p} > 0$ for some $p \in [1, \infty]$, then $\gamma_{p \to p} > 0$ for all $p \in (1, \infty)$.

Remark

The function $\gamma_{p\to p}$ may not be continuous at $p = 1, \infty$. Indeed, if m has the standard normal distribution and $\{T_t\}$ is the Ornstein-Uhlembeck semigroup, then $\gamma_{p\to p} = 1$ for $p \in (1, \infty)$, $\gamma_{p\to p} = 0$ for $p = 1, \infty$. Let p^* be the conjugate exponent of p, i.e. $\frac{1}{p} + \frac{1}{p^*} = 1$.

<u>Theorem</u>

Assume that $\{T_t\}$ is self-adjoint on $L^2(m)$. Then, $\gamma_{p\to p} = \gamma_{p^* \to p^*}$ for $p \in [1, \infty]$ and $p \mapsto \gamma_{p\to p}$ is non-decreasing on [1, 2]and non-increasing on $[2, \infty]$. In particular, the maximum is attained at p = 2.

2. Relation between hypercontractivity and $\gamma_{p \rightarrow q}$

If there exist $p,q \in (1,\infty)$, $K \ge 0$ and C > 0 such that p < q and

$$|T_K f||_q \le C||f||_p, \quad f \in L^p(m),$$

then for any $p', q' \in (1, \infty)$ such that p' < q', there exist $K' \ge 0$ and C' > 0 and

$$|T_{K'}f||_{q'} \le C'||f||_{p'}, \quad f \in L^{p'}(m).$$

(If C = 1, we can choose C' = 1.)

In this talk, we call $\{T_t\}$ hyperbounded, if there exist $p,q \in (1,\infty)$, $K \ge 0$ and C > 0 such that p < q and

$$||T_K f||_q \le C ||f||_p, \quad f \in L^p(m).$$
 (1)

If (1) holds with C = 1 and some p, q, K, then we call $\{T_t\}$ hypercontractive.

Theorem

The following conditions are equivalent:

- 1. $\{T_t\}$ is hyperbounded.
- 2. $\gamma_{p \to q} \ge 0$ for some 1 .

3. $\gamma_{p \to q} = \gamma_{2 \to 2}$ for all $p, q \in (1, \infty)$.

Proposition

$$||T_K f||_r \le ||f||_2, \quad f \in L^2(m)$$

for some $K > 0$ and $r > 2$. Then, we have
$$||T_K f - \langle f \rangle||_2 \le (r - 1)^{-1/2} ||f||_2, \quad f \in L^2(m),$$
$$||T_t f - \langle f \rangle||_2 \le \sqrt{r - 1} \exp\left\{-\frac{t}{K} \log \sqrt{r - 1}\right\} ||f||_2,$$
$$f \in L^2(m), \ t \in [0, \infty).$$

Theorem

The following conditions are equivalent:

1. $\{T_t\}$ is hypercontractive.

2.
$$\gamma_{p \to q} > 0$$
 for some $1 .$

- 3. $\gamma_{p \to q} = \gamma_{2 \to 2}$ for all $p, q \in (1, \infty)$ and $\gamma_{2 \to 2} > 0$.
- 4. There exist K > 0 and r > 0 such that

 $||T_K||_{2\to r} < \infty$ and $||T_K - m||_{2\to 2} < 1.$

3. Sufficient conditions for L^p -spectra to be *p*-independent

Assume that $\{T_t\}$ is hyperbounded. Let \mathfrak{A}_p be the generator of $\{T_t\}$ on $L^p(m)$ for $p \in [1,\infty)$.

Assume that \mathfrak{A}_2 is a *normal* operator,

i.e. $(\mathfrak{A}_2)^*\mathfrak{A}_2 = \mathfrak{A}_2(\mathfrak{A}_2)^*$.

In this section, we see that

the spectra of \mathfrak{A}_p are independent of p.

Under the assumption, we can consider the spectral decomposition of $-\mathfrak{A}_2$ as follows:

$$-\mathfrak{A}_2 = \int_{\mathbb{C}} \lambda dE_{\lambda}.$$

For a bounded \mathbb{C} -valued measurable function ϕ on \mathbb{C} , define an operator $\phi(-\mathfrak{A}_2)$ on $L^2(m)$ by

$$\phi(-\mathfrak{A}_2) = \int_{\mathbb{C}} \phi(\lambda) dE_{\lambda}.$$

We can regard $\phi(-\mathfrak{A}_2)$ as a linear operator on $L^p(m)$.

Proposition

Let *h* be a \mathbb{C} -valued bounded measurable function on \mathbb{C} which is analytic on the neighborhood around 0 and define $\phi(\lambda) := h(1/\lambda)$.

Then, $\phi(-\mathfrak{A})$ is a bounded operator on $L^p(m)$.

Theorem

Assume that $\{T_t\}$ is hyperbounded and \mathfrak{A}_2 is normal. Then, $\sigma(-\mathfrak{A}_q) = \sigma(-\mathfrak{A}_2)$ for $q \in (1, \infty)$. By a little more calculation, we have the following theorem.

<u>Theorem</u>

Assume that $\{T_t\}$ is hyperbounded and \mathfrak{A}_2 is normal. Then, $\sigma_p(-\mathfrak{A}_2) = \sigma_p(-\mathfrak{A}_p), \ \sigma_c(-\mathfrak{A}_2) = \sigma_c(-\mathfrak{A}_p)$ and $\sigma_r(-\mathfrak{A}_p) = \emptyset$ for $p \in (1, \infty)$. If there exists positive constants K and C such that

$$|T_K f||_{\infty} \le C ||f||_1, \quad f \in L^1(m),$$

then $\{T_t\}$ is called ultracontractive.

<u>Theorem</u>

Assume that $\{T_t\}$ is ultracontractive and that \mathfrak{A}_2 is a normal operator. Then, $\sigma(-\mathfrak{A}_p) = \sigma(-\mathfrak{A}_2)$ for $p \in [1,\infty)$. Moreover, $\sigma_p(-\mathfrak{A}_2) = \sigma_p(-\mathfrak{A}_p)$, $\sigma_c(-\mathfrak{A}_2) = \sigma_c(-\mathfrak{A}_p)$ and $\sigma_r(-\mathfrak{A}_p) = \emptyset$ for $p \in [1,\infty)$.

4. Properties on spectra on L^p -spaces of operators symmetric on the L^2 -space

Let A_p be a densely defined, closed, and real operator on $L^p(m)$ for $p \in [1, \infty)$.

Assume that $\{A_p; p \in [1, \infty)\}$ are consistent,

i.e. if p > q, then $Dom(A_p) \subset Dom(A_q)$

and $A_p f = A_q f$ for $f \in \text{Dom}(A_p)$.

A Markovian semigroup $\{T_t\}$ and its generators $\{\mathfrak{A}_p; p \in [1,\infty)\}$ satisfy the assumption on $\{A_p; p \in [1,\infty)\}$.

Additionally assume that A_2 is self-adjoint on $L^2(m)$, i.e. $A_2 = A_2^*$.

<u>Lemma</u>

$$\sigma_{\mathsf{r}}(A_p) = \emptyset$$
 for $p \leq 2$.

Theorem

We have the following.

1.
$$\sigma_{p}(A_{p}) \subset \sigma_{p}(A_{q})$$
 for $q \leq p$.
2. $\sigma_{r}(A_{q}) \subset \sigma_{r}(A_{p})$ for $q \leq p$.
3. $\sigma_{c}(A_{p}) \subset \sigma_{c}(A_{q}) \cup \sigma_{p}(A_{q})$ for $q \leq p \leq 2$.
4. $\rho(A_{q}) \subset \rho(A_{p})$ for $q \leq p \leq 2$.

 $\sigma(A_p)$ is decreasing for $p \in [1, 2]$ and increasing for $p \in [2, \infty)$.

Corollary

Let $p \in [2, \infty)$. Then the followings hold. 1. $\sigma_p(A_p) \cup \sigma_r(A_p) = \sigma_p(A_{p^*})$. 2. $\sigma_c(A_p) = \sigma_c(A_{p^*})$.

Corollary

 $\sigma_{\mathsf{p}}(A_p) \subset \mathbb{R} \text{ for } p \in [2,\infty).$

Since A_2 is a self-adjoint operator, by using the general theory of self-adjoint operators on Hilbert spaces it is obtained that $\sigma(A_2) \subset \mathbb{R}$.

However, when $p \neq 2$, it does not always hold.

5. Example that $\gamma_{p \rightarrow p}$ depends on p

Let $p \in [1, \infty)$.

Define a measure ν on $[0,\infty)$ by $\nu(dx) := e^{-x}dx$ and a differential operator \mathfrak{A}_p on $L^p(\nu)$ by

$$\mathsf{Dom}(\mathfrak{A}_p) := \left\{ f \in W^{2,p}(\nu; \mathbb{C}); f'(0) = 0 \right\},$$
$$\mathfrak{A}_p := \frac{d^2}{dx^2} - \frac{d}{dx}.$$

Note that \mathfrak{A}_2 is a self-adjoint operator on $L^2(\nu)$. The self-adjointness on $L^2(\nu)$ implies that $\{T_t\}$ is analytic semigroup on $L^p(m)$ for $p \in (1, \infty)$. Let $p \in [1, 2]$.

Consider the linear transformation I defined by

$$(If)(x) := e^{-x/2}f(x).$$

Then, we have

$$\int_0^\infty |If(x)|^p e^{(\frac{p}{2}-1)x} dx = \int_0^\infty |f(x)|^p \nu(dx),$$

and f'(0) = 0 if and only if $\frac{1}{2}(If)(0) + (If)'(0) = 0$. Hence, I is an isometric transformation from $L^p(\nu)$ to $L^p(\tilde{\nu}_p)$, where $\tilde{\nu}_p := e^{(\frac{p}{2}-1)x} dx$.

Define a linear operator
$$\tilde{\mathfrak{A}}_p$$
 on $L^p(\tilde{\nu}_p)$ by
 $\mathsf{Dom}(\tilde{\mathfrak{A}}_p) := \left\{ f \in W^{2,p}(\nu; \mathbb{C}); \frac{1}{2}f(0) + f'(0) = 0 \right\},$
 $\tilde{\mathfrak{A}}_p := \frac{d^2}{dx^2} - \frac{1}{4}.$

Then, we have the following commutative diagram.

$$\begin{array}{cccc} L^{p}(\nu) & \xrightarrow{\mathfrak{A}_{p}} & L^{p}(\nu) \\ I \downarrow & & \downarrow I \\ L^{p}(\tilde{\nu}_{p}) & \xrightarrow{\mathfrak{A}_{p}} & L^{p}(\tilde{\nu}_{p}) \end{array}$$

By this diagram we have

$$\sigma_{\mathsf{P}}(\mathfrak{A}_p) = \sigma_{\mathsf{P}}(\tilde{\mathfrak{A}}_p), \ \sigma_{\mathsf{C}}(\mathfrak{A}_p) = \sigma_{\mathsf{C}}(\tilde{\mathfrak{A}}_p), \ \sigma_{\mathsf{r}}(\mathfrak{A}_p) = \sigma_{\mathsf{r}}(\tilde{\mathfrak{A}}_p).$$

Hence, to see the spectra of \mathfrak{A}_p , it is sufficient to see the spectra of $\tilde{\mathfrak{A}}_p$.

From now we cannot discuss the cases that $1 \le p < 2$ and that p = 2 in the same way.

First we consider the case that $1 \le p < 2$.

Proof. Let $\lambda \in \mathbb{C} \setminus \{\frac{1}{4}\}$. Then,

$$\begin{cases} -\frac{d^2}{dx^2}u + \frac{1}{4}u = \lambda u\\ \frac{1}{2}u(0) + u'(0) = 0, \end{cases}$$

if and only if

$$\begin{cases} u(x) = C_1 e^{x\sqrt{-\lambda + 1/4}} + C_2 e^{-x\sqrt{-\lambda + 1/4}} \\ C_1 \left(\frac{1}{2} + \sqrt{-\lambda + 1/4} \right) + C_2 \left(\frac{1}{2} - \sqrt{-\lambda + 1/4} \right) = 0. \end{cases}$$

For u satisfying above,

$$u \in L^p(\tilde{\nu}_p)$$
 if and only if
" $p \operatorname{Re}\sqrt{-\lambda + 1/4} + \frac{p}{2} - 1 < 0 \text{ or } C_1 = 0$ ".
 $(\sqrt{z} := \sqrt{r}e^{i\theta/2} \text{ for } z = re^{i\theta} \text{ where } r \ge 0, \ \theta \in (-\pi, \pi].)$

<u>Lemma</u>

If
$$1 \le p < 2$$
, then
 $\rho(-\tilde{\mathfrak{A}}_p) \supset \left\{ x + iy; \ y^2 > \left(\frac{2}{p} - 1\right)^2 \left(x - \frac{p-1}{p^2}\right) \right\} \setminus \{0\}.$

Proof. Let

$$\begin{split} \phi_{\lambda}(x) &:= \left(\frac{1}{2} - \sqrt{-\lambda + \frac{1}{4}}\right) e^{x\sqrt{-\lambda + \frac{1}{4}}} - \left(\frac{1}{2} + \sqrt{-\lambda + \frac{1}{4}}\right) e^{-x\sqrt{-\lambda + \frac{1}{4}}},\\ \psi_{\lambda}(x) &:= e^{-x\sqrt{-\lambda + \frac{1}{4}}},\\ W_{\lambda} &:= -2\sqrt{-\lambda + \frac{1}{4}} \left(\frac{1}{2} - \sqrt{-\lambda + \frac{1}{4}}\right). \end{split}$$

28

Define a \mathbb{C} -valued function g_{λ} on $[0,\infty) \times [0,\infty)$ by

$$g_{\lambda}(x,y) := \begin{cases} rac{1}{W_{\lambda}} \phi_{\lambda}(x) \psi_{\lambda}(y), \ x \leq y \ rac{1}{W_{\lambda}} \phi_{\lambda}(y) \psi_{\lambda}(x), \ y \leq x \end{cases}$$

Let
$$G_{\lambda}f(x) := \int_{0}^{\infty} g_{\lambda}(x,y)f(y)dy$$
.
Then,

$$\{\lambda - (-\tilde{\mathfrak{A}}_p)\}G_{\lambda}f = f, \text{ and } \frac{1}{2}G_{\lambda}f(0) + (G_{\lambda}f)'(0) = 0.$$

By checking the boundedness of G_{λ} on $L^p(\tilde{\nu}_p)$ we have the conclusion.

$$\tilde{\nu}_p = e^{\left(\frac{p}{2}-1\right)x} dx, \quad \tilde{\mathfrak{A}}_p = \frac{d^2}{dx^2} - \frac{1}{4},$$

$$\mathsf{Dom}(\tilde{\mathfrak{A}}_p) = \left\{ f \in W^{2,p}(\tilde{\nu}_p; \mathbb{C}); \ \frac{1}{2}f(0) + f'(0) = 0 \right\}.$$

<u>Theorem</u>

Followings hold for $1 \le p < 2$. 1. $\sigma_p(-\tilde{\mathfrak{A}}_p) = \{0\} \cup \left\{x + iy; x, y \in \mathbb{R}, x > \frac{p-1}{p^2}\right\}$ and $|y| < \left(\frac{2}{p} - 1\right) \sqrt{x - \frac{p-1}{n^2}}$, 2. $\sigma_{\mathsf{C}}(-\tilde{\mathfrak{A}}_p) = \left\{ x + iy; \ x, y \in \mathbb{R}, \ x \ge \frac{p-1}{p^2}, \\ \text{and } |y| = \left(\frac{2}{p} - 1\right) \sqrt{x - \frac{p-1}{p^2}} \right\} \setminus \{0\},$ 3. $\rho(-\tilde{\mathfrak{A}}_n)$ $= \left\{ x + iy; \ x, y \in \mathbb{R}, \ y^2 > \left(\frac{2}{p} - 1\right)^2 \left(x - \frac{p-1}{p^2}\right) \right\} \setminus \{0\}.$

$$\nu(dx) = e^{-x} dx, \quad \mathfrak{A}_p = \frac{d^2}{dx^2} - \frac{d}{dx},$$

$$\mathsf{Dom}(\mathfrak{A}_p) = \left\{ f \in W^{2,p}(\nu; \mathbb{C}); f'(0) = 0 \right\}.$$

<u>Theorem</u>

Followings hold for $1 \le p \le 2$. 1. $\sigma_p(-\mathfrak{A}_p) = \{0\} \cup \left\{x + iy; x, y \in \mathbb{R}, x > \frac{p-1}{p^2}\right\}$ and $|y| < \left(\frac{2}{p} - 1\right) \sqrt{x - \frac{p-1}{n^2}}$, 2. $\sigma_{\mathsf{C}}(-\mathfrak{A}_p) = \left\{ x + iy; \ x, y \in \mathbb{R}, \ x \ge \frac{p-1}{p^2} \\ \text{and } |y| = \left(\frac{2}{p} - 1\right) \sqrt{x - \frac{p-1}{p^2}} \right\} \setminus \{0\},$ 3. $\rho(-\mathfrak{A}_n)$ $= \left\{ x + iy; \ x, y \in \mathbb{R}, \ y^2 > \left(\frac{2}{p} - 1\right)^2 \left(x - \frac{p-1}{p^2} \right) \right\} \setminus \{0\}.$

Next we check
$$\sigma(-\tilde{\mathfrak{A}}_2)$$
. Recall that
 $\tilde{\nu}_2 = dx, \quad \tilde{\mathfrak{A}}_2 = \frac{d^2}{dx^2} - \frac{1}{4},$
 $\operatorname{Dom}(\tilde{\mathfrak{A}}_2) = \left\{ f \in W^{2,2}(dx;\mathbb{C}); \ \frac{1}{2}f(0) + f'(0) = 0 \right\}.$

Lemma
$$\sigma_{p}(-\tilde{\mathfrak{A}}_{2}) = \{0\}.$$

Now we check $\sigma_{c}(-\tilde{\mathfrak{A}}_{2})$. $\sigma_{disc}(-\tilde{\mathfrak{A}}_{2}) := \{\lambda \in \sigma(-\tilde{\mathfrak{A}}_{2}); \ \lambda \text{ is isolated point of } \sigma(-\tilde{\mathfrak{A}}_{2}), \lambda \text{ is an eigenvalue of finite multiplicity} \}$ $\sigma_{ess}(-\tilde{\mathfrak{A}}_{2}) := \sigma(-\tilde{\mathfrak{A}}_{2}) \setminus \sigma_{disc}(-\tilde{\mathfrak{A}}_{2}).$

By the lemma above,

$$\sigma_{\text{disc}}(-\tilde{\mathfrak{A}}_2) = \{0\}, \quad \sigma_{\text{c}}(-\tilde{\mathfrak{A}}_2) = \sigma_{\text{ess}}(-\tilde{\mathfrak{A}}_2).$$

Let $\tilde{\mathscr{E}}$ be the bilinear form associated with $\tilde{\mathfrak{A}}_2$. Then, $\tilde{\mathscr{E}}(f,g) = \int_0^\infty f'(x)g'(x)dx + \frac{1}{4}\int_0^\infty f(x)g(x)dx - \frac{1}{2}f(0)g(0).$ Let

$$\tilde{\mathscr{E}}^{(0)}(f,g) = \int_0^\infty f'(x)g'(x)dx + \frac{1}{4}\int_0^\infty f(x)g(x)dx.$$

Then, $\tilde{\mathscr{E}}$ is a compact perturbation of $\tilde{\mathscr{E}}^{(0)}$.

Hence, by Weyl's theorem we have the following lemma.

<u>Lemma</u>

$$\sigma_{\mathrm{ess}}(-\tilde{\mathfrak{A}}_2) = \sigma_{\mathrm{ess}}(-\tilde{\mathfrak{A}}_2^{(0)}) = \left[\frac{1}{4},\infty\right).$$

$$\tilde{\nu}_2 = dx, \quad \tilde{\mathfrak{A}}_2 = \frac{d^2}{dx^2} - \frac{1}{4},$$

$$\mathsf{Dom}(\tilde{\mathfrak{A}}_2) = \left\{ f \in W^{2,2}(dx;\mathbb{C}); \ \frac{1}{2}f(0) + f'(0) = 0 \right\}.$$

Theorem

$$\sigma_{\mathsf{p}}(-\tilde{\mathfrak{A}}_2) = \{0\}, \quad \sigma_{\mathsf{C}}(-\tilde{\mathfrak{A}}_2) = \left[\frac{1}{4}, \infty\right)$$

$$\nu(dx) = e^{-x} dx, \quad \mathfrak{A}_p = \frac{d^2}{dx^2} - \frac{d}{dx},$$

$$\mathsf{Dom}(\mathfrak{A}_p) = \left\{ f \in W^{2,p}(\nu;\mathbb{C}); f'(0) = 0 \right\}.$$

Theorem

$$\sigma_{\mathsf{p}}(-\mathfrak{A}_2) = \{0\}, \quad \sigma_{\mathsf{C}}(-\mathfrak{A}_2) = \left[\frac{1}{4}, \infty\right)$$

.

Theorem

For
$$p \in (2, \infty)$$
, we have the following.
1. $\sigma_{p}(-\mathfrak{A}_{p}) = \{0\},$
2. $\sigma_{c}(-\mathfrak{A}_{p}) = \left\{x + iy; \ x, y \in \mathbb{R}, \ x \ge \frac{p^{*}-1}{p^{*2}} \\ \text{and } |y| = \left(\frac{2}{p^{*}} - 1\right)\sqrt{x - \frac{p^{*}-1}{p^{*2}}}\right\} \setminus \{0\},$
3. $\sigma_{r}(-\mathfrak{A}_{p}) = \left\{x + iy; \ x, y \in \mathbb{R}, \ x \ge \frac{p^{*}-1}{p^{*2}} \\ \text{and } |y| < \left(\frac{2}{p^{*}} - 1\right)\sqrt{x - \frac{p^{*}-1}{p^{*2}}}\right\},$
4. $\rho(-\mathfrak{A}_{p}) = \left\{x + iy; \ x, y \in \mathbb{R}, \ y^{2} > \left(\frac{2}{p^{*}} - 1\right)^{2} \left(x - \frac{p^{*}-1}{p^{*2}}\right)\right\} \setminus \{0\}.$

Since $\{T_t\}$ is analytic on $L^p(m)$ for $p \in (1, \infty)$, $\sup\{\operatorname{Re}\lambda; \lambda \in \sigma(-\mathfrak{A}_p) \setminus \{0\}\} = -\lim_{t \to \infty} \frac{1}{t} \log ||T_t - m||_{p \to p}.$

Hence, we obtain the following corollary.

Thank you for your attention!