Quenched invariance principle for random walks and random divergence forms in random media on cones

Takashi Kumagai
(RIMS, Kyoto University, Japan)

On-going joint work with Z.Q. Chen (Seattle) and D.A. Croydon (Warwick). http://www.kurims.kyoto-u.ac.jp/~kumagai/

28 September 2012: Stochastic Analysis and Applications at Okayama

1 Introduction

Bond percolation on $\mathbb{Z}^{d}(d \geq 2)$

$\exists p_{c} \in(0,1)$ s.t. $p>p_{c} \Rightarrow \exists 1 \infty$-cluster $\mathcal{G}(\omega)$ (random media!), $p<p_{c} \Rightarrow$ no ∞-cluster

品范

(c) M.T. Barlow

© M.T. Barlow

Known results SRW on supercritical percolation cluster on \mathbb{Z}^{d}

- [Quenched invariance principle (QIP)]
(Sidoravicius-Sznitman '04, Berger-Biskup '07, Mathieu-Piatnitski. '07)

- [Gaussian heat kernel bounds] (Barlow '04) $p_{t}^{\omega}(x, y):=\mathbb{P}^{x}\left(Y_{t}=y\right) / \mu_{y}$.

$$
\frac{c_{1}}{t^{d / 2}} \exp \left(-c_{2} \frac{d(x, y)^{2}}{t}\right) \leq p_{t}^{\omega}(x, y) \leq \frac{c_{3}}{t^{d / 2}} \exp \left(-c_{4} \frac{d(x, y)^{2}}{t}\right)
$$

\mathbb{P}^{*}-a.s. ω for $t \geq d(x, y) \vee \exists U_{x}, x, y \in \mathcal{C}$.

Rem 1. "Annealed" invariance principle: known since 80's
Rem 2. Generalization of the QIP to random conductance model is known.
(Our problem) Ex $\underline{\text { Ex }} \mathrm{RW}$ on supercritical percolation cluster for $\mathbb{L} \subset \mathbb{Z}^{d}(d \geq 2)$ $\mathbb{L}:=\left\{\left(x_{1}, \cdots, x_{d}\right) \in \mathbb{Z}^{d}: x_{j_{1}}, \cdots, x_{j_{l}} \geq 0\right\}$ for some $1 \leq j_{1}<\cdots<j_{l} \leq d, l \leq d$.

$\exists p_{c} \in(0,1)$ s.t. $\exists 1 \infty$-cluster \mathcal{C} for $p>p_{c}$, no ∞-cluster for $p<p_{c}$.
$\mathcal{C}(\omega): \infty$-cluster, $\quad \mathbb{P}^{*}(\cdot):=\mathbb{P}_{p}(\cdot \mid 0 \in \mathcal{C}), \quad Y^{\omega}:$ SRW on $\mathcal{C}(\omega)$.

(Q1) $n^{-1} Y_{\left[n^{2} t\right]}^{\omega} \rightarrow B_{\sigma t}, \quad \mathbb{P}^{*}-$ a.e. ω (for some $\sigma>0$)?
(How about RW on percolation on boxes?)

Ex 2 Random divergence form on a cone
C : Lipschitz domain in \mathbb{R}^{d-1}
$D:=\left\{\left(t, t x_{1}, \cdots, t x_{d-1}\right) \in \mathbb{R}^{d}: t>0,\left(x_{1}, \cdots, x_{d-1}\right) \in C\right\}:$ cone

(Ω, \mathbb{P}) : Prob. space, $\omega \in \Omega, \quad c_{1} I \leq A^{\omega}(x) \leq c_{2} I$ for all $x \in \bar{D}, \mathbb{P}$-a.e. ω.
$\exists \tilde{A}^{\omega}(x), \in \mathbb{R}^{d}$ s.t. $\tilde{A}^{\omega}(x)=A^{\omega}(x), x \in \bar{D}, \tilde{A}^{\omega}(x)=\tilde{A}^{\tau_{x} \omega}(0),\left\{\tau_{x}\right\}_{x \in \mathbb{R}^{d}}$: ergo. shift.
$\mathcal{E}(f, f)=\int_{D} \nabla f(x) A^{\omega}(x) \nabla f(x) d x \quad \Rightarrow \quad Y^{\omega}:$ corresponding diffusion.
(Q2) $\varepsilon Y_{\varepsilon^{-2} t}^{\omega} \rightarrow B_{\sigma t}, \mathbb{P}-$ a.e. ω (for some $\sigma>0$)?
(Known results for the whole space) Random divergence form on \mathbb{R}^{d} $(\Omega, \mathbb{P}):$ Prob. space, $\omega \in \Omega, \quad c_{1} I \leq A^{\omega}(x) \leq c_{2} I$ for all $x \in \mathbb{R}^{d}, \mathbb{P}$-a.e. ω, $A^{\omega}(x)=A^{\tau_{x} \omega}(0),\left\{\tau_{x}: x \in \mathbb{R}^{d}\right\}:$ ergo. shift. $\mathcal{E}(f, f)=\int_{\mathbb{R}^{d}} \nabla f(x) A^{\omega}(x) \nabla f(x) d x \quad \Rightarrow \quad Y^{\omega}$: corresponding diffusion.

- [Quenched invariance principle] (...., Osada '83, Kozlov '85)

- [Gaussian heat kernel bounds]

$$
\begin{equation*}
\frac{c_{1}}{t^{d / 2}} \exp \left(-c_{2} \frac{d(x, y)^{2}}{t}\right) \leq p_{t}^{\omega}(x, y) \leq \frac{c_{3}}{t^{d / 2}} \exp \left(-c_{4} \frac{d(x, y)^{2}}{t}\right) \tag{1}
\end{equation*}
$$

\mathbb{P}-a.s. ω for $t>0, x, y \in \mathbb{R}^{d}$.

Problem in extending the results to cones
All the results use corrector method, which requires
translation invariance of the original space.

Main results: Yes! (Q1) (box case as well) and (Q2) hold.

Ideas

- Full use of heat kernel estimates.
- Use information of QIP on the whole space and Dirichlet form methods.

2 Framework and results

$D \subset \mathbb{R}^{d}$: Lipschitz domain

$$
\begin{aligned}
\mathcal{E}(f, f) & =\frac{C}{2} \int_{D}|\nabla f(x)|^{2} d x, \quad \forall f \in W^{1,2}(D), \\
W^{1,2}(D) & =\left\{f \in L^{2}(D, m): \nabla f \in L^{2}(D, m)\right\}, \quad m: \text { Lebesgue meas. }
\end{aligned}
$$

X : reflected BM corresponding to $\left(\mathcal{E}, W^{1,2}(D)\right)$
X^{D} : process killed on exiting D (i.e. X^{D} corresponding to $\left(\mathcal{E}, W_{0}^{1,2}(D)\right)$).
$\left\{D_{n}\right\}_{n \geq 1} \subset \bar{D}: D_{n}$ supports a meas. m_{n} s.t. $m_{n} \rightarrow m$ weakly in \bar{D}.

Theorem $2.1\left\{X_{t}^{n}\right\}_{t \geq 0}:$ sym. Hunt proc. on $L^{2}\left(D_{n} ; m_{n}\right), m_{n} \xrightarrow{\text { weak }} m$ on \bar{D}.
Assume that $\forall\left\{n_{j}\right\}$ subseq., $\exists\left\{n_{j_{k}}\right\}$ sub-subseq. and
$\exists\left(\widetilde{X}, \widetilde{\mathbb{P}}^{x}, x \in \bar{D}\right): m$-sym. conserv. conti. Feller proc. on \bar{D} starting at x s.t.
(i) $\forall x_{j} \rightarrow x, \mathbb{P}_{x_{j}}^{n_{j}} \Rightarrow \widetilde{\mathbb{P}}_{x}$ weakly in $\mathbb{D}([0, \infty), \bar{D})$,
(ii) $\widetilde{X}^{D} \stackrel{d}{=} X^{D}$ where \widetilde{X}^{D} is subprocess of \widetilde{X} killed upon leaving D,
(iii) $(\tilde{\mathcal{E}}, \tilde{\mathcal{F}}): D$-form of \widetilde{X} on $L^{2}(D ; m)$ satisfies

$$
\mathcal{C} \subset \tilde{\mathcal{F}} \quad \text { and } \quad \tilde{\mathcal{E}}(f, f) \leq K \mathcal{E}(f, f) \quad \forall f \in \mathcal{C}
$$

where \mathcal{C} : core for $\left(\mathcal{E}, W^{1,2}(D)\right)$ and $K \geq 1$.
$\Rightarrow\left(X^{n}, \mathbb{P}_{x_{n}}^{n}\right) \xrightarrow{\text { weak }}\left(X, \mathbb{P}_{x}\right)$ in $\mathbb{D}([0, \infty), \bar{D})$ as $n \rightarrow \infty$.

How to verify (i)-(iii)?
(i) Use heat kernel esitmates etc.
(ii) From QIP of the whole space (iii) By LLN-type arguments

2.1 About (i)

Assume $0 \in D_{n}, \forall n \geq 1, \exists \delta_{n} \in[0,1]$ with $\lim _{n \rightarrow \infty} \delta_{n}=0$ s.t. $|x-y| \geq \delta_{n} \forall x \neq y \in D_{n}$.
Assumption 2.2 (I) $\exists c_{1}, c_{2}, c_{3}, \alpha, \beta, \gamma>0, N_{0} \in \mathbb{N}$ s.t. the following hold for all $n \geq N_{0}, x_{0} \in B\left(0, c_{1} n^{1 / 2}\right) \cap D_{n}$, and all $\delta_{n}^{1 / 2} \leq r \leq 1$.
(a) $E^{x}\left[\tau_{B\left(x_{0}, r\right) \cap D_{n}}\left(X^{n}\right)\right] \leq c_{2} r^{\beta}, \forall x \in B\left(x_{0}, r / 2\right) \cap D_{n}$, where $\tau_{A}:=\left\{t \geq 0: X_{t} \notin A\right\}$.
(b) Ellip. Harnack: $\forall h_{n}$: bdd. in D_{n} and harm. (w.r.t. X^{n}) in $B\left(x_{0}, r\right)$, then

$$
\begin{equation*}
\left|h_{n}(x)-h_{n}(y)\right| \leq c_{3}\left(\frac{|x-y|}{r}\right)^{\gamma}\left\|h_{n}\right\|_{\infty} \quad \text { for all } \quad x, y \in B\left(x_{0}, r / 2\right) \tag{2}
\end{equation*}
$$

(II) $\forall\left\{x_{n} \in D_{n}: n \geq 1\right\}$ and $\forall x \in \bar{D}$ s.t. $x_{j} \rightarrow x \in \bar{D},\left\{\mathbb{P}_{n}^{x_{n}}\right\}_{n}$ is tight in $\mathbb{D}\left(\mathbb{R}_{+}, \bar{D}\right)$. (III) $J(X):=\int_{0}^{\infty} e^{-u}\left\{1 \wedge\left(\sup _{0 \leq t \leq u}\left|X_{t}-X_{t-}\right|\right)\right\} d u \xrightarrow{d} 0$.

Proposition 2.3 Under Assumption 2.2, the following holds:
$\forall\left\{n_{j}\right\}$ subseq., $\exists\left\{n_{j_{k}}\right\}$ sub-subseq. and m-sym. diffusion $\left(\widetilde{X}, \widetilde{\mathbb{P}}^{x}, x \in \bar{D}\right)$ on \bar{D}
s.t. $\forall x_{j} \rightarrow x, \mathbb{P}_{n_{j_{k}}}^{x_{j}} \xrightarrow{\text { weak }} \widetilde{\mathbb{P}}^{x}$ in $\mathbb{D}([0, \infty), \bar{D})$.

Rem. Roughly, Gaussian-type heat kernel est. are enough to verify Assumption 2.2.
(Obtain equi-Hölder cont. for resolvents and use Ascoli-Arzela etc.:

$$
\left|U_{n}^{\lambda} f(x)-U_{n}^{\lambda} f(y)\right| \leq C d(x, y)^{\gamma^{\prime}}\|f\|_{\infty}, \text { where } U_{n}^{\lambda} f(x)=\mathbb{E}^{x} \int_{0}^{\infty} e^{-\lambda t} f\left(X_{t}^{n}\right) d t
$$

For the case of random media, use Borel-Cantelli as well.)

3 Answer to (Q2) in Example 2

- Condition (ii): Whole space QIP by Osada, Kozlov \Rightarrow (ii) holds.
- Condition (i): By uniform ellipticity,

$$
\begin{equation*}
\mathcal{E}(f, f)=\int_{D} \nabla f(x) A^{\omega}(x) \nabla f(x) d x \asymp \int_{D}|\nabla f(x)|^{2} d x, \quad \forall f \in W^{1,2}(D) \tag{3}
\end{equation*}
$$

$\Rightarrow \mathcal{E}^{\varepsilon}$: D-form corresp. to $\varepsilon Y_{\varepsilon^{-2}}^{\omega}$ also satisfies (3). (Note: $\varepsilon D=D$.)
\Rightarrow Gaussian-type HK est. (1) still holds uniformly for $\mathcal{E}^{\varepsilon}$.
(Due to the stability: $(1) \Leftrightarrow$ (Vol. doubling) + (Poincaré ineq.) i.e.)

$$
\begin{aligned}
& \mu\left(B\left(x_{0}, 2 R\right) \cap D\right) \leq C_{1} \mu\left(B\left(x_{0}, R\right) \cap D\right), \\
& \int_{B\left(x_{0}, R\right) \cap D}\left(f(x)-\bar{f}_{B}\right)^{2} \mu(d x) \leq C_{2} R^{2} \int_{B\left(x_{0}, 2 R\right) \cap D}|\nabla f(x)|^{2} d x, \quad \forall f \in W^{1,2}(D), \\
& \forall x_{0} \in D, R>0 \text { where } \bar{f}_{B}=\int_{B} f(x) \mu(d x) . \\
& \Rightarrow \text { Assumption } 2.2 \text { holds. }
\end{aligned}
$$

- Condition (iii): Any subsequ. limit $\tilde{\mathcal{E}}$ still satisfies $(3) \Rightarrow$ (iii) holds.
- Condition (ii): Whole space QIP by Berger-Biskup, Mathieu-Piatnitski \Rightarrow (ii) holds.
- Condition (iii): LLN-type arguments as follows:

Lemma $4.1 \quad\left\{\eta_{i}\right\}_{i}$: i.i.d. with $E\left|\eta_{1}\right|<\infty$.
$\left\{a_{k}^{n}\right\}_{k=1}^{n}: a_{k}^{n} \in \mathbb{R},\left|a_{k}^{n}\right| \leq M \forall k, n, a:=\exists \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}^{n}, \exists \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|a_{k}^{n}\right|$.
$\Rightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}^{n} \eta_{k}=a E\left[\eta_{1}\right]$ almost surely.
Let $\mu_{x}^{\omega}=(\sharp$ of bonds in \mathcal{C} con. to $x), D_{n}=n^{-1} \mathbb{L}, \bar{D}=\left\{\left(x_{1}, . ., x_{d}\right) \in \mathbb{R}^{d}: x_{j_{1}}, . ., x_{j_{l}} \geq 0\right\}$. Proposition 4.2 Let $\mathcal{E}^{(n)}$ be D-form corresp. to $n^{-1} Y_{\left[n^{2} .\right]}^{\omega}$.

$$
\begin{array}{rlrl}
\tilde{\mathcal{E}}(f, f) \leq & \lim _{n \rightarrow \infty} \mathcal{E}^{(n)}(f, f)=2^{d-l} p d \int_{\bar{D}}|\nabla f(x)|^{2} d x, & & \forall f \in C_{c}^{2}(\bar{D}) \\
& \lim _{n \rightarrow \infty} \sum_{x \in D_{n}} f(x) \frac{\mu_{n x}^{\omega}}{n^{d}}=2^{d-l} p d \int_{\bar{D}} f(x) d x, & \forall f \in C_{c}(\bar{D}) \tag{5}
\end{array}
$$

Proof of 1st ineq. of (4): $\quad \tilde{\mathcal{E}}(f, f)=\sup _{t>0} \frac{1}{t}\left(f-P_{t} f, f\right)=\sup _{t>0} \liminf _{n_{j} \rightarrow \infty} \frac{1}{t}\left(f-P_{t}^{n_{j}} f, f\right)$

$$
\leq \liminf _{n_{j} \rightarrow \infty} \sup _{t>0} \frac{1}{t}\left(f-P_{t}^{n_{j}} f, f\right)=\liminf _{n_{j} \rightarrow \infty} \mathcal{E}^{\left(n_{j}\right)}(f, f)
$$

For the 2nd ineq., suppose Supp $f \subset B(0, M) \cap \bar{D}$. Then

$$
\mathcal{E}^{(n)}(f, f)=\frac{n^{2-d}}{2} \sum_{x, y \in D_{n}, x \sim y}(f(x)-f(y))^{2} \mu_{n x, n y}=\frac{1}{n^{d}} \sum_{(x, y) \in H_{n, f}} n^{2}(f(x / n)-f(y / n))^{2} \mu_{x, y},
$$

where $H_{n, f}:=\{(x, y): x, y \in \mathbb{L} \cap B(0, n M), x \sim y\}$. Note $\sharp M_{n, f} \sim 2^{d-l} d(n M)^{d}$.
Let $a_{(x, y)}^{n}:=n^{2}(f(x / n)-f(y / n))^{2} \in\left[0, \exists M^{\prime}\right]$ and $\eta_{(x, y)}:=\mu_{x, y}$. By IP of SRW,

$$
\lim _{n \rightarrow \infty}\left(2^{d-l} d(M n)^{d}\right)^{-1} \sum_{(x, y) \in H_{n, f}} a_{(x, y)}^{n}=M^{-d} \int_{\bar{D}}|\nabla f(x)|^{2} d x
$$

So by Lemma 4.1,

$$
\lim _{n \rightarrow \infty} n^{-d} \sum_{(x, y) \in H_{n, f}} a_{(x, y)}^{n} \eta_{(x, y)}=2^{d-l} d p \int_{\bar{D}}|\nabla f(x)|^{2} d x
$$

$$
\begin{aligned}
\text { Proof of (5): } & \sum_{x \in D_{n}} f(x) \frac{\mu_{n x}}{n^{d}}=n^{-d} \sum_{(x, y) \in H_{n, f}} f(x / n) \mu_{x, y} \\
& \lim _{n \rightarrow \infty} n^{-d} \sum_{(x, y) \in H_{n, f}} f(x / n)_{ \pm}=2^{d-l} d \int_{\bar{D}} f(x)_{ \pm} d x
\end{aligned}
$$

So by Lemma 4.1, we obtain (5).

- Condition (i): Strategy (Percolation est.) \Rightarrow (HK estimates) \Rightarrow Assumption 2.2

Lemma 4.3 (Percolation est.) $\exists c_{1}, c_{2}, c_{3}>0$ s.t. $\forall x, y \in \mathbb{L}$,

$$
\begin{gathered}
\mathbb{P}\left(x, y \in \mathcal{C} \text { and } d(x, y) \leq c_{1}|x-y|\right) \leq c_{2} e^{-c_{3}|x-y|} \\
\mathbb{P}\left(x, y \in \mathcal{C} \text { and } d(x, y) \geq c_{1}^{-1}|x-y|\right) \leq c_{2} e^{-c_{3}|x-y|}
\end{gathered}
$$

where $|\cdot-\cdot|$ is the Euclidean dist. and $d(\cdot, \cdot)$ is the graph dist.

Rem. \mathbb{Z}^{d} case by Antal-Pisztora and we exteded to the case of \mathbb{L}.
NB: This is the only place where we need the restriction to half/square spaces.

Theorem 4.4 (HK est.) $\exists \delta, c_{1}, . ., c_{7}>0$ and c_{i} s.t. the following holds.
$\exists \Omega_{1} \subset \Omega$ with $\mathbb{P}\left(\Omega_{1}\right)=1$ and $S_{x}, x \in \mathbb{L}$ s.t. $S_{x}(\omega)<\infty, \forall \omega \in \Omega_{1}, \forall x \in \mathcal{C}(\omega)$, and

$$
\mathbb{P}\left(S_{x} \geq n, x \in \mathcal{C}\right) \leq c_{1} e^{-c_{2} n^{\delta}}
$$

(a) For $x, y \in \mathcal{C}(\omega)$ the transition density of Y satisfies

$$
\begin{align*}
& q_{t}^{Y}(x, y) \leq c_{3} t^{-d / 2} \exp \left(-c_{4}|x-y|^{2} / t\right), \quad t \geq|x-y| \vee S_{x} \tag{6}\\
& q_{t}^{Y}(x, y) \geq c_{5} t^{-d / 2} \exp \left(-c_{6}|x-y|^{2} / t\right), \quad t \geq|x-y|^{3 / 2} \vee S_{x} \tag{7}
\end{align*}
$$

(b) Further, if $x \in \mathcal{C}(\omega), t \geq S_{x}$ and $B=B(x, 2 \sqrt{t})$ then

$$
q_{t}^{Z, B}(x, y) \geq c_{7} t^{-d / 2}, \text { for } y \in B(x, \sqrt{t})
$$

Rem. Given Lemma 4.3, we can prove similarly to Barlow ('04) (also similarly to Andres-Barlow-Deuschel-Hambly ('11)).

5 Proof of Theorem 2.1

Since both are Feller, enough to show $(\widetilde{\mathcal{E}}, \widetilde{\mathcal{F}})=\left(\mathcal{E}, W^{1,2}(D)\right)$.
$\widetilde{X}:$ diffusion, no killings \Rightarrow D-form is strong local $\Rightarrow \widetilde{\mathcal{E}}(u, u)=\frac{1}{2} \widetilde{\mu}_{\langle u\rangle}^{c}(\bar{D}), \forall u \in \widetilde{\mathcal{F}}$.
Condition (iii) $\Rightarrow W^{1,2}(D) \subset \widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{E}}(f, f) \leq K \mathcal{E}(f, f), \forall f \in W^{1,2}(D)$.

$$
\Rightarrow \widetilde{\mu}_{\langle u\rangle}(d x) \leq \frac{C K}{2}|\nabla u(x)|^{2} d x, \forall u \in W^{1,2}(D) . \text { So }
$$

$$
\begin{equation*}
\widetilde{\mu}_{\langle u\rangle}(\partial D)=0, \quad \forall u \in W^{1,2}(D) . \tag{8}
\end{equation*}
$$

Condition (ii) \oplus strong locality of $\widetilde{\mu}_{\langle u\rangle} \Rightarrow$ functions in $\widetilde{\mathcal{F}}_{b}$ is locally in $W_{0}^{1,2}(D)$ and

$$
\begin{equation*}
1_{D}(x) \tilde{\mu}_{\langle u\rangle}(d x)=1_{D}(x) \frac{C}{2}|\nabla u(x)|^{2} d x, \quad \forall u \in \widetilde{\mathcal{F}}_{b} . \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
& (8)+(9) \Rightarrow \widetilde{\mathcal{E}}(u, u)=\mathcal{E}(u, u), \forall u \in W^{1,2}(D) \\
& (9) \Rightarrow \forall u \in \widetilde{\mathcal{F}}_{b}, \int_{D}|\nabla u(x)|^{2} d x<\infty \text { so } u \in W^{1,2}(D) \Rightarrow \widetilde{\mathcal{F}} \subset W^{1,2}(D)
\end{aligned}
$$

So we obtain $(\widetilde{\mathcal{E}}, \widetilde{\mathcal{F}})=\left(\mathcal{E}, W^{1,2}(D)\right)$.

6 Remark and Generalization

Remark: Since we have heat kernel estimates and QIP, we have the followig LCLT:

$$
\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{L}} \sup _{t \geq T}\left|n^{d / 2} q_{n t}^{\omega}\left(0,\left[n^{1 / 2} x\right]\right)-k_{t}(x)\right|=0, \quad \mathbb{P}-\text { a.s. }
$$

where $k_{t}(x)=\left(2 \pi t \sigma^{2}\right)^{-d / 2} \exp \left(-|x|^{2} /\left(2 \sigma^{2} t\right)\right), T>0$, and $[x]:=\left(\left[x_{1}\right], \cdots,\left[x_{d}\right]\right)$.

Generalization to random conductance mocdel
We can prove QIP on \mathbb{L} for the following RCM:

$$
\mathbb{P}\left(\mu_{e} \in\{0\} \cup[c, \infty)\right)=1 \text { for } \exists c, \quad \mathbb{P}\left(\mu_{e}>0\right)>p_{c}\left(\mathbb{Z}^{d}\right), \quad \mathbb{E}\left[\mu_{e}\right]<\infty
$$

For RCM bdd from above but NOT below, anomalous HK decay may occur (Berger-Biskup-Hoffman-Kozma '08).

