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Introduction

Anderson (1958): low lying spectra of −∆ + Vω are pure point
and corresponding eigenfunctions are strongly localized.

Consider the parabolic counterpart (Gärtner-Molchanov 1990, later
many others):

∂tu = (∆ − Vω)u, u(0, x) = δ0(x).

The “eigenfunction expansion” u(t, x) =
∑∞

k=1 e−tλk φk(0)φk(x)
tells us that u(t, ·) localizes as well.

u(t, x) = E0

[
exp

{
−

∫ t

0
Vω(Bs)ds

}
, Bt = x

]
−→ localization of the diffusion particle
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1. Setting

•
(
{Bt}t≥0 ,Px

)
: κ∆-Brownian motion on Rd

•
(
ω =

∑
i

δωi , P
)

: Poisson point process on Rd

with unit intensity

Potential
For a non-negative and integrable function v ,

Vω(x) :=
∑

i

v(x − ωi ).

(Typically v(x) = 1B(0,1)(x) or |x |−α ∧ 1 with α > d .)
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Annealed measure

We are interested in the behavior of Brownian motion under the
measure

Qt( · ) =

exp

{
−

∫ t

0
Vω(Bs)ds

}
P ⊗ P0( · )

E ⊗ E0

[
exp

{
−

∫ t

0
Vω(Bs)ds

}] .

The configuration is not fixed and hence Brownian motion and ωi ’s
tend to avoid each other.
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•0

Bt•

exp{−
∫ t
0 Vω(Bs)ds} : large, P : large, P0 : small
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2. Light tailed case

Donsker and Varadhan (1975)

When v(x) = o(|x |−d−2) as |x | → ∞,

E ⊗ E0

[
exp

{
−

∫ t

0
Vω(Bs) ds

}]
= exp

{
−c(d , κ)t

d
d+2 (1 + o(1))

}
as t → ∞.

Remark
c(d , κ) = inf

U
{κλD(U) + |U|}.
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Suppose v is compactly supported for simplicity. Then

E ⊗ E0

[
exp

{
−

∫ t

0
Vω(Bs) ds

}]
≥ P0

(
B[0,t] ⊂ U)

)
P (ω(U) = 0)

≈ exp{−κλD(U)t − |U|}.

Optimizing over U, we get the correct lower bound.

maximizer = B(x , t
1

d+2 R0)

7 / 27



. . . . . .

Suppose v is compactly supported for simplicity. Then

E ⊗ E0

[
exp

{
−

∫ t

0
Vω(Bs) ds

}]
≥ P0

(
B[0,t] ⊂ U)

)
P (ω(U) = 0)

≈ exp{−κλD(U)t − |U|}.

Optimizing over U, we get the correct lower bound.

maximizer = B(x , t
1

d+2 R0)

7 / 27



. . . . . .

•0

•

I

R

R0t
1

d+2 Bt
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One specific strategy gives dominant
contribution to the partition function.

⇓
It occurs with high probability under

the annealed path measure.
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Sznitman (1991, d = 2) and Povel (1999, d ≥ 3)

When v has a compact support, there exists

Dt(ω) ∈ B
(
0, t

1
d+2 (R0 + o(1))

)
such that

Qt

(
B[0,t] ⊂ B

(
Dt(ω), t

1
d+2 (R0 + o(1))

)) t→∞−−−→ 1.

Remark
Bolthausen (1994) proved the corresponding result for
two-dimensional random walk model.
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3. Heavy tailed case

Pastur (1977)

When v(x) ∼ |x |−α (α ∈ (d , d + 2)) as |x | → ∞,

E ⊗ E0

[
exp

{
−

∫ t

0
Vω(Bs)ds

}]
= exp

{
−a1t

d
α (1 + o(1))

}
,

where a1 = |B(0, 1)|Γ
(

α−d
α

)
.

Unfortunately, this first order asymptotics tells us little about the
Brownian motion.
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In fact, Pastur’s proof goes as follows:

E ⊗ E0

[
exp

{
−

∫ t

0
Vω(Bs)ds

}]
≈ E[exp{−tVω(0)}]

∼ exp{−a1t
d
α }.

The effort of the Brownian motion is hidden in the higher order
terms. A bit more careful inspection of the proof shows...
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• 0

I

R

O(t
1
α )

Bt
?
6o(t

1
α )
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F. (2011)

When v(x)=|x |−α ∧ 1 (d < α < d + 2),

E ⊗ E0

[
exp

{
−

∫ t

0
Vω(Bs)ds

}]
= exp

{
−a1t

d
α − (a2 + o(1))t

α+d−2
2α

}
,

where

a2 := inf
∥φ∥2=1

{∫
κ|∇φ(x)|2 + C (d , α)|x |2φ(x)2 dx

}
.

Remark
The proof is an application of the general machinery developed by
Gärtner-König 2000.
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Recalling the Donsker-Varadhan LDP

P0

(
1

t

∫ t

0
δBs ds ∼ φ2(x)dx

)
≈ exp

{
−t

∫
κ|∇φ(x)|2dx

}
,

we expect the second term explains the behavior of the Brownian
motion.

In particular, since P0

(
B[0,t] ⊂ B(x , R)

)
≈ exp{−tR−2}, the

localization scale should be

tR−2 = t
α+d−2

2α ⇔ R = t
α−d+2

4α .

In addition, the term
∫

C (d , α)|x |2φ(x)2 dx says that Vω (locally)
looks like a parabola.
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• 0

I

R

O(t
1
α )

Bt
?
6O(t

α−d+2
4α )
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the below is the
section along this line

0•

Vω(x)

h(t)

¾-

r(t)

Heavy tailed case

th(t) ≫ t/r(t)2
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Main Theorem (F. 2012)

Qt

(
B[0,t] ⊂ B

(
0, t

α−d+2
4α (log t)

1
2
+ϵ

))
t→∞−−−→ 1,

Qt

(
Vω(x) − Vω(mt(ω)) ∼t−

α−d+2
α C (d , α)|x − mt(ω)|2

in B(0, t
α−d+2

4α
+ϵ)

)
t→∞−−−→ 1,{

t−
α−d+2

4α B
t

α−d+2
2α s

}
s≥0

in law−−−→ OU-process with

“random center”,

where mt(ω) is the minimizer of Vω in B(0, t
α−d+2

4α log t).
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4. Outline of the proof

An important feature of this model is that there are two scales in
the “optimal strategy”.

I ω lives in the scale t1/α,

I {Bs}s≤t lives in the scale o(t1/α).

This, for instace, prevents us from using the “compactification by
projecting on a torus”.

But on the other hand, this helps us since it allows us to treat ω
and Bs “separately”.
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Suppose we have a crude estimate

sup
0≤s≤t

|Bs | = o(t1/α).

Then Bs ≈ 0 viewed from ω. Thus it is plausible that

Qt(dω) ∼ E[exp{−tVω(0)} : dω]

E[exp{−tVω(0)}]
.

The right hand side is nothing but the Poisson point process with
intensity e−t(|x |−α∧1)dx .

−→ potential locally looks like parabola,

−→ localization, weak convergence.
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It remains to verify sup
0≤s≤t

|Bs | = o(t1/α). This is a localization but

weaker than the main theorem.
To this end, we need some control on Vω ... circular argument?

No! What we need is crude control which can be established with
bare hands.

In what follows, we assume Vω takes its minimum value at 0 for
simplicity.
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4.1 Crude control on the potential

Lemma 1

Qt

(
Vω(0) ∈ d

α
a1t

−α−d
α + t−

3α−3d+2
4α (−M1, M1)

)
→ 1.

Idea

Zt ≈ E[exp{−tVω(0)}]

{
= exp

{
−a1t

d
α

}
,

≈ suph>0

[
e−thP(Vω(0) ≈ h)

]
.

d
αa1t

−α−d
α = h(t) is the maximizer.

⇒E ⊗ E0

[
exp

{
−

∫ t

0
Vω(Bs)ds

}
: Vω(0) is far from h(t)

]
≤ E [exp{−tVω(0)} : Vω(0) is far from h(t)] = o(Zt).
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Lemma 2

Qt

(
Vω(0) + Vω(x) ≥ 2h(t) + c1t

−α−d+2
α |x |2

for t
α−d+6

8α < |x | < M2t
α−d+6

8α

)
→ 1.

Idea
By Lemma 1,

exp

{
−

∫ t

0
Vω(Bs)ds

}
. exp {−th(t)} = exp

{
−d

α
a1t

d
α

}
Then, use

E
[
exp

{
− t

2
(Vω(0) + Vω(x))

}]
≈ exp

{
−a1t

d
α − c2t

d−2
α |x |2

}
and Chebyshev’s inequality.
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4.2 Crude control on the trajectory

- x
0

Vω(x) − Vω(0)

t
α−d+6

8α−t
α−d+6

8α−M2t
α−d+6

8α M2t
α−d+6

8α

By “penalizing a crossing”,

Qt

(
B[0,t] ⊂ B

(
0, M2t

α−d+6
8α

))
→ 1.
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How about the critical case α = d + 2?

Ôkura (1981) proved

E ⊗ E0

[
exp

{
−

∫ t

0
Vω(Bs) ds

}]
= exp

{
−c̃(d , κ)t

d
d+2 (1 + o(1))

}
as t → ∞, where

c̃(d , κ) = inf
∥φ∥2=1

{∫
κ|∇φ(x)|2 + 1 − exp

{
−

∫
φ(y)2

|x − y |d+2
dy

}
dx

}
.
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Thank you!
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