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Introduction Objective of my talk

Objective of my talk

A domain of the form D = H \
∪N

k=1 Ck is called a standard slit domain,
where H is the upper half-plane and
{Ck} are mutually disjoint line segments parallel to x-axis contained in H.

We fix a standard slit domain D and consider a Jordan arc

γ : [0, tγ ] → D, γ(0) ∈ ∂H, γ(0, tγ ] ⊂ D. (1.1)

For each t ∈ [0, tγ ], let
gt : D \ γ[0, t] → Dt (1.2)

be the unique conformal map from D \ γ[0, t] onto a standard slit domain

Dt = H \
∪N

k=1 Ck(t) satisfying a hydrodynamic normalization

gt(z) = z +
at
z

+ o(1), z → ∞. (1.3)

at is called half-plane capacity and it can be shown to be a strictly increasing
left-continuous function of t with a0 = 0.
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Introduction Objective of my talk

We write
ξ(t) = gt(γ(t)) (∈ ∂H), 0 ≤ t ≤ tγ . (1.4)

In
[BF08] On chordal and bilateral SLE in multiply connected domains,

Math. Z. 258(2008), 241-265

R.O. Bauer and R.M. Friedrich have derived a chordal Komatu-Loewner equation

∂−gt(z)

∂at
= −πΨt(gt(z), ξ(t)), g0(z) = z ∈ D, 0 < t ≤ tγ , (1.5)

where ∂−gt(z)
∂at

denotes the left partial derivative with respect to at .

This is an extension of the radial Komatu-Loewner equation obtained
first by Y. Komatu
[K50] On conformal slit mapping of multiply-conected domains,

Proc. Japan Acad. 26(1950), 26-31

and later by Bauer-Friedrich
[BF06] On radial stochastic Loewner evolution in multiply connected domains,

J. Funct. Anal. 237(2006), 565-588
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Introduction Objective of my talk

The kernel Ψt(z , ζ), z ∈ Dt , ζ ∈ ∂H, appearing in (1.5) is an analytic function of
z ∈ Dt whose imaginary part is constant on each slit Ck(t) of the domain Dt .

It is explicitly expressed in terms of the classical Green function of the domain Dt .

However the following problems have not been solved
neither in the radial case [K50], [BF06] nor in the chordal case [BF08]:

Problem 1 (continuity). Is at continuous in t ?

Problem 2 (differentiablility). If at were continuous in t, the curve γ can be
reparametrized in a way that at = 2t, 0 ≤ t ≤ tγ .

Is gt(z) differentiable in t so that (1.5) can be converted to the
genuine KL equation ?

d

dt
gt(z) = −2πΨt(gt(z), ξ(t)), g0(z) = z ∈ D, 0 < t ≤ tγ . (1.6)
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Introduction Objective of my talk

gt can be extended as a homeomorphism between ∂(D \ γ[0, t]) and ∂Dt .
The slit Ck is homeomorphic with the image slit Ck(t) by gt for each 1 ≤ k ≤ N.
Denote by zk(t), z

′
k(t) the left and right endpoints of Ck(t).

[BF06], [BF08] went on further to make the following claims:

Claim 1. The endpoints are subjected to the Bauer-Friedrch equation

d

dt
zk(t) = −2πΨt(zk(t), ξ(t)),

d

dt
z ′k(t) = −2πΨt(z

′
k(t), ξ(t)), (1.7)

Claim 2. Conversely, given a continuous function ξ(t) on the boundary ∂H, the
BF-equation (1.7) can be solved uniquely in zk(t), z

′
k(t),

and then the KL-equation (1.6) can be solved uniquely in gt(z).

We aim at answering Problems 1 and 2 affirmatively,
establishing the genuine KL-equation (1.6) with Ψt(z , ζ) being
the complex Poisson kernel of BMD on Dt

and moreover legitimating Claims 1 and 2 made by Bauer-Friedrich.

Masatoshi Fukushima with Z.-Q. Chen and S. Rohde () BMD applied to KL and BF equations
September 26, 2012 at Okayama University Stochastic Analysis and Applications German Japanese bilateral project 6

/ 30



. . . . . .

Introduction Known facts in simply connected case (N = 0)

Known facts in simply connected case (N = 0)

The continuity of at follows easily from the Carathéodory convegence
theorem.
The continuity of ξ(t) ∈ ∂H can also be shown by an complex analyitc
argument.
Dt = H and the complex Poisson kernel of H is given by

Ψt(z , ζ) = Ψ(z , ζ) = − 1

π

1

(z − ζ)

with

=Ψ(z , ζ) =
1

π

1

(x − ζ)2 + y2
, z = x + iy ,

being the Poisson kernel of ABM on H
The equation (1.5) is reduced to the well known Loewner equation

∂

∂t
gt(z) =

2

gt(z)− ξt
, g0(z) = z , (1.8)

under the reparametrization at = 2t.
Given a continuous motion ξ(t) on ∂H, {gt} and γ can be recovered by
solving the Loewner equation (1.8).
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Introduction Known facts in simply connected case (N = 0)

Given a probability measure on the collection of continuous curves γ on H
connecting 0 and ∞
that satisfies a domain Markov property and conformal invariance,
the associated random motion ξ(t) equals

√
κBt for κ > 0 and the Brownian

motion Bt .

Conversely, given ξ(t) =
√
κBt on ∂H,

the associated trace γ of the stochastic(Schramm) Loewner evolution (SLE)
{gt}
behaves differently according to the parameter κ
and is linked to scaling limits of certain random processes.
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BMD and its complex Poisson kernel Definition of BMD

Definition of BMD

Let D = H \
∪N

k=1 Ck be a standard slit domain.
A Brownian motion with darning (BMD) Z∗ for D is, roughly speaking, a
diffusion process on H absorbed at ∂H and reflected at each slit Cj but by
regarding Cj as a single point c∗k .
To be more precise, let

D∗ = D ∪ K∗, K∗ = {c∗1 , c∗2 , · · · , c∗N} (2.1)

and define a negihborhood U∗
j of each point cj∗ in D∗ by {c∗j } ∪ (Uj \ Cj) for any

neighborhood Uj of Cj in H.
Denote by m the Lebesgue measure on D and by m∗ its zero extension to D∗.
Let Z 0 = (Z 0

t ,P0
z) be the absorbing Brownian motion(ABM) on D.

In
[CF] Z.-Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Changes, and

Boundary Theory, Princeton University Press, 2012,

the BMD Z∗ for D is characterized as a unique m∗-symmetric diffusion extension
of Z 0 from D to D∗ with no killing at K∗.
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BMD and its complex Poisson kernel Definition of BMD

Let (E∗,F∗) be the Dirichlet form of Z∗ on L2(D∗;m∗) = L2(D;m).
It is a regular strongly local Dirichlet form on L2(D∗;m∗) described as{

E∗(u, v) = 1
2D(u, v), u, v ∈ F∗,

F∗ = {u ∈ W 1,2
0 (H) : u is constant D-q.e on each Cj}.

The uniquely associated diffusion on D∗ is the BMD Z∗.

Let γ be an analytic Jordan curve surrounding a slit Cj , namely,
γ ⊂ D, insγ ⊃ Cj , insγ ∩ Ck = ∅, k 6= j .
For a harmonic function u defined in a neighborhood of Cj , the value∫

γ

∂u(ζ)

∂nζ
ds(ζ)

is independent of the choice of such curve γ with the normal vector n pointing
toward Cj and arc length s. This value is called the period of u around Cj .
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BMD and its complex Poisson kernel Complex Poisson kernel of BMD

Complex Poisson kernel of BMD

Suppose v on D∗ is harmonic with respect to the BMD Z∗ on D∗. Then the
period of v around Cj equals 0 for any 1 ≤ j ≤ N.
In particular,−v

∣∣
D
admits a harmonic conjugate u on D uniquely up to an

additive real constant so that f (z) = u(z) + iv(z), z ∈ D, is an analytic
function on D.

We call the 0-order resolvent density function G∗(x , y), x ∈ D∗, y ∈ D, of
the BMD Z∗ the Green function of Z∗.
From the zero period property of BMD-harmonic function, we can deduce

G∗(z , ζ) = G (z , ζ) + 2Φ(z) · A−1 ·t Φ(ζ), z ∈ D∗, ζ ∈ D. (2.2)

Here G (z , ζ) is the Green function (0-order resolvent density) of the ABM Z 0

on D, Φ(z) is the N-vector with j component

ϕ(j)(z) = P0
z(Z

0
ζ0− ∈ ∂Aj), z ∈ D, 1 ≤ j ≤ N,

and A is an N × N-matrix whose (i , j)-component pij equals the period of
ϕ(j) around Ci , 1 ≤ i , j ≤ N.
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BMD and its complex Poisson kernel Complex Poisson kernel of BMD

We now define the Poisson kernel of Z∗ by
K∗(z , ζ) = − 1

2
∂

∂nζ
G∗(z , ζ), z ∈ D∗, ζ ∈ ∂H, so that

K∗(z , ζ) = −1

2

∂

∂nζ
G (z , ζ)− Φ(z) · A−1 ·t ∂

∂nζ
Φ(ζ), z ∈ D∗, ζ ∈ ∂H. (2.3)

K∗(·, ζ), ζ ∈ ∂H, is a Z∗-harmonic function of z on D∗ for each ζ ∈ ∂H.
Therefore there exists a function Ψ(z , ζ) analytic in z ∈ D with imaginary part
K∗(z , ζ) uniquely under the normalization condition

lim
z→∞

Ψ(z , ζ) = 0. (2.4)

Ψ(z , ζ), z ∈ D, ζ ∈ ∂H, is called the complex Poisson kernel of the BMD Z∗.

We can give an alternative derivation of the KL-equation (1.5) in terms of the left
derivative in at but with the BMD-complex Poisson kernel Ψt(z , ζ) of the slit
domain Dt appearing on its right hand side.
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Solving continuity and differentiability problems Strategy

Strategy

I A probabilistic representation of =gt(z) in terms of BMD

II continuity of gt(z) in t with some uniformity in z

III continuity of at

IV continuity of ξ(t)

V continuity of Dt

VI Lipschitz continuity of the BMD–complex Poisson kernel Ψ(z , ζ)

I =⇒ II =⇒ III, IV, V
solving particularily Problem 1

VI combinded with II, IV, V
=⇒ continuity of Ψt(gt(z), ξ(t)) (right hand side of (1.6))
=⇒ differentiability of gt(z)

solving Problem 2
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Solving continuity and differentiability problems Probabilistic expression of =gt (z) and continuity of gt (z)

Probabilistic expression of =gt(z) and continuity of gt(z)

We write Ft = γ[0, t]. Let
ZH = (ZH

· ,PH
z ): the absorbing Brownian motion on H

Z∗ = (Z∗
· ,P∗

z ): the BMD on D∗ = D ∪ K∗ with K∗ = {c∗1 , · · · , c∗N}

For r > 0, let Γr = {z = x + iy : y = r} and

v∗
t (z) := lim

r→∞
r · PH,∗

z (σΓr < σFt ), z ∈ D∗ \ F .

The function v∗
t is well defined by the above and Z∗-harmonic on D∗ \ F .

Furthermore

v∗
t (z) = vt(z) +

N∑
j=1

PH
z

(
σK < σFt , Z

H
σK

∈ Cj

)
v∗
t (c

∗
j ), z ∈ D \ F , (3.1)

where
vt(z) = =z − EH

z [=ZH
σK∪Ft

; σK∪Ft <∞] (≥ 0), (3.2)
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Solving continuity and differentiability problems Probabilistic expression of =gt (z) and continuity of gt (z)

v∗
t (c

∗
i ) =

N∑
j=1

Mt,ij

1− R∗
t,j

∫
ηj

vt(z)νj(dz), 1 ≤ i ≤ N. (3.3)

Here η1, · · · , ηN are mutually disjoint smooth Jordan curve surrounding
C1, · · · ,CN ,

νi (dz) = P∗
c∗i

(
Z∗
σηi

∈ dz
)
, 1 ≤ i ≤ N, (3.4)

R∗
t,i =

∫
ηi

PH
z

(
σK < σFt , Z

H
σK

∈ Ci

)
νi (dz), 1 ≤ i ≤ N, (3.5)

and Mt,ij is the (i , j)-entry of the matrix M =
∑∞

n=0(Q
∗
t )

n for a matrix Q∗
t with

entries

q∗t,ij =

{
PH,∗
c∗i

(
σK∗ < σFt , Z

∗
σK∗ = c∗j

)
/(1− R∗

t,i ) if i 6= j ,

0 if i = j ,
1 ≤ i , j ≤ N. (3.6)

Moreover v∗
t

∣∣
D\F admits a unique harmonic conjugate u∗t such that

gt(z) = u∗t (z) + iv∗
t (z), z ∈ D \ F .
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Solving continuity and differentiability problems Probabilistic expression of =gt (z) and continuity of gt (z)

The way of constructing v∗ in the above theorem is due to G.F. Lawler

[L06] The Laplacian-b random walk and the Schramm-Loewner evolution.

Illinois J. Math. 50 (2006), 701-746

where the excursion reflected Brownian motion (ERBM) was utilized in place of
the current BMD.

C+
k (resp. C−

k ) denotes the upper (resp. lower) side of the slit Ck , 1 ≤ k ≤ N.
We denote by ∂pCk the set C+

k ∪ C−
k with topology induced by the path distance

in H \ Ck . We also let ∂pK =
∪N

k=1 ∂pCk .

From the preceding probabilistic expression, we can deduce the following:

For each fixed s ∈ [0, tγ ],
lim
t→s

gt(z) = gs(z),

uniformly in z on each compact subset of D ∪ ∂pK ∪ (∂H \ {γ(0)}).
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Solving continuity and differentiability problems Lipschitz continuity of BMD-complex Poisson kernel

Lipschitz continuity of BMD-complex Poisson kernel

We denote by D the collection of ’labelled’ standard slit domains.
For D, D̃ ∈ D, define their distance d(D, D̃) by

d(D, D̃) = max
1≤i≤N

(|zi − z̃i |+ |z ′i − z̃ ′i |), (3.7)

where, for D = H \ {C1,C2, · · · ,CN}, zi (resp. z ′i ) denotes the left (resp. right)

end point of Ci , 1 ≤ i ≤ N. z̃i , z̃
′
i , 1 ≤ i ≤ N, are the corresponding points to D̃.

{Dt : 0 ≤ t ≤ tγ} is a one parameter subfamily of D.

For each D ∈ D, the associated BMD-complex Poisson kernel
Ψ(z , ζ), z ∈ D, ζ ∈ ∂H, is well defined.

The correspondence D 7→ Ψ(z , ζ) is Lipschitz continuous in the sense described
in the next slide:

Let Uj , Vj , 1 ≤ j ≤ N, be any relatively compact open subsets of H with

U j ⊂ Vj ⊂ V j ⊂ H, 1 ≤ j ≤ N, V j ∩ V k = ∅, j 6= k.
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Solving continuity and differentiability problems Lipschitz continuity of BMD-complex Poisson kernel

We fix any a > 0 and b > 0 for which the subcollection D0 of D defined by

D0 = {H \ ∪N
j=1Cj ∈ D : Cj ⊂ Uj , |zj − z ′j | > a, dist(Cj , ∂Uj) > b, 1 ≤ j ≤ N}

is non-empty. There exists then ε0 > 0 such that,
for any ε ∈ (0, ε0) and for any D ∈ D0 and D̃ ∈ D with d(D, D̃) < ε,

there exists a diffeomorphism f̃ε from H onto H satisfying

f̃ε is sending D onto D̃, linear on
∪N

j=1 Uj and the identity map

on H \
∪N

j=1 V j ,

for some positive constant L1 independent of ε ∈ (0, ε0) and of D ∈ D0,

|z − f̃ε(z)| < L1 · ε, z ∈ H,

for any compact subset Q of H containing
∪N

j=1 Uj , and
for any compact subset J of ∂H,

|Ψ(z , ζ)− Ψ̃(f̃ε(z), ζ)| < LQ,J · ε, z ∈ (Q \ K ) ∪ ∂pK , ζ ∈ J,

where Ψ̃ denotes the BMD-complex Poisson kernel for D̃ and
LQ,J is a positive constant independent of ε ∈ (0, ε0) and of D ∈ D0.
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Solving continuity and differentiability problems Lipschitz continuity of BMD-complex Poisson kernel

As we have seen in §2.2, the complex Poisson kernel Ψ(z , ζ) for a standard slit
domain D can be obtained from the Green function G (z ,w) of D by repeating

to take normal derivatives at ∂H,
to take the periods around the slits
to take line integrals of normal derivatives along smooth curves. The Lipschitz

continuity of Ψ(z , ζ) can be proved using the two perturbation formulae holding
for the Green function G (z ,w) and the transformed one

g(z ,w , ε) = G̃ (f̃ε(z), f̃ε(w)):

We let F =
∪N

i=1(V i \ Ui ). It holds that for any ζ ∈ H \ F and w ∈ H

g(ζ,w , ε)− G (ζ,w) = ε

∫
F

B(ε)
z G (z , ζ)g(z ,w , ε)dx1dx2, z = x1 + ix2,

g(ζ,w , ε)− G (ζ,w) = ε

∫
F

B(ε)
z G (z , ζ)(G (z ,w) + εη(ε)(z ,w))dx1dx2,

where η(ε) is a continuous function on H×H bounded there uniformly in ε > 0
and in D ∈ D0. It is important that domain of integration is restricted to F .
These formulae can be shown following an iterior variation method
in Section 15.1 of P.R. Garabedian

[G64] Partial Differential Equation, AMS Chelsia, 2007, republication of 1964 edition
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Bauer-Friedrich equation of slit motions

Bauer-Friedrich equation of slit motions

For t ∈ [0, tγ ], gt maps D = H \
∪N

j=1 Cj conformally onto Dt = H \
∪N

j=1 Cj(t).
For each 1 ≤ j ≤ N, the endpoints zj(t), z

′
j (t) of Cj(t) satisfy the BF equation

d
dt=zj(t) = −2π=Ψt(zj(t), ξ(t)),
d
dt<zj(t) = −2π<Ψt(zj(t), ξ(t)),
d
dt<z

′
j (t) = −2π<Ψt(z

′
j (t), ξ(t)),

(4.1)

To verify this, observe that there exist unique points

z̃j(t) ∈ ∂pCj , such that gt(z̃j(t)) = zj(t),

z̃ ′j (t) ∈ ∂pCj , such that gt(z̃
′
j (t)) = z ′j (t)

as gt is a homeomorphism between ∂pCj and ∂pCj(t),
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Bauer-Friedrich equation of slit motions

We denote the left and right end points of Cj by zj = a+ ic , z ′j = b + ic ,
respectively. We consider the open rectangles

R+ = {z : a < x < b, c < y < c + δ}, R− = {z : a < x < b, c − δ < y < c},

and R = R+ ∪ Ci ∪ R− for δ > 0 with R+ ∪ R− ⊂ D \ γ[0, tγ ].
Since =gt(z) takes a constant value at Cj , gt can be extended to an analytic
function g+

t from R+ to R across Cj by the Schwarz reflection.
Combining the preceding results with the Cauchy integral formula for the
derivative of g+

t (z) in z ,
d
dz g

+
t (z) is shown to be C 1-function in (t, z) ∈ (0, tγ)× R .

Assume that z̃j(t) ∈ C+
j \ {zj , z ′j }.

Since g+
t (z̃j(t)) is the endpoint zj(t) of Cj(t),

it can be shown that z̃j(t) is a zero of g+
t (z)− g+

t (z̃j(t)) of order 2.
An informal differentiation of <zt(t) = <g+

t (z̃j(t)) in t then yields

d

dt
<zj(t) = < ∂

∂t
gt(z)

∣∣
z=z̃j (t)

+ <[[g+
t ]′(z̃j(t))

d

dt
z̃j(t)] = −2π<Ψt(zj(t), ξ(t)).
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Bauer-Friedrich equation of slit motions

When z̃j(t) ∈ ∂pCj ∩ B(zj , ε) for 0 < ε < b−a
2 ,

we map the region B(zj , ε) \ ∂pCj onto B(0,
√
ε) ∩H by

ψ(z) = (z − zj)
1/2

and extend ft = gt ◦ ψ−1 analytically onto B(0,
√
ε) by Schwarz reflection again.

We can make the same argument as above working with (ft ,B(0,
√
ε))

in place of (g+
t ,R).
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BF and KL equations for a given ξ(t) Solving BF equation for a given continuous ξ(t)

Solving BF equation for a given continuous ξ(t)

Define an open set S ⊂ R3N by

S = {(y, x, x′) ∈ R3N : y > 0, x < x′,

either x ′j < xk or x ′k < xj whenever yj = yk , j 6= k}. (5.1)

The generic point of S is denoted by s = (y, x, x′), y, x , x′ ∈ RN .
s ∈ S uniquely determines D = D(s) ∈ D possessing slits Cj with endpoints
zj = xj + iyj , z

′
j = x ′j + iyj , and vice versa. The complex Poisson kernel Ψ(z , ζ) of

BMD on D ∈ D will be designated by Ψs(z , ζ) in terms of the corresponding
point s ∈ S . |s| will denote the Euclidean norm of s ∈ S .

We fix a continuous real function ξ(t), t ∈ [0,∞).
We then define a vector field f(t, s) = (fk(t, s))1≤k≤3N on [0,∞)× S by

fk(t, s) = −2π=Ψs(zk , ξ(t)), 1 ≤ k ≤ N,

fN+k(t, s) = −2π<Ψs(zk , ξ(t)), 1 ≤ k ≤ N,

f2N+k(t, s) = −2π<Ψs(z
′
k , ξ(t)), 1 ≤ k ≤ N.

We can then readily prove the claim described in the next slide:
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. . . . . .

BF and KL equations for a given ξ(t) Solving BF equation for a given continuous ξ(t)

(i) f(t, s) it is jointly continuous in (t, s) ∈ [0,∞)× S .
(ii) f(t, s) is locally Lipschitz continuous in the following sense:
for any s0 ∈ S and 0 < T <∞, there exists a neighborhood U(s0) ⊂ S and a
constant L > 0 such that

|f(t, s1)− f(t, s2)| ≤ L|s1 − s2|, for any s1, s2 ∈ U(s0), t ∈ [0,T ].

(iii) For each τ ∈ [0,∞), s0 ∈ S , the Cauchy problem

d

dt
s(t) = f(t, s(t)), s(τ) = s0, (5.2)

has a unique solution in a neighborhood of (τ, s0) in [0,∞)× S .

f(t, s) is continuous in t for a fixed s ∈ S so that (i) follows from (ii).
(ii) is a special case of the result of 3.3. (iii) follows from (i) and (ii).

Let s(t) = (y(t), x(t), x′(t)) be the solution of (5.2).
Then (5.2) is reduced to the BF equation (4.1) with Ψs(t) in place of Ψt .
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. . . . . .

BF and KL equations for a given ξ(t) Solving KL equation for a given continuous ξ(t)

Solving KL equation for a given continuous ξ(t)

Suppose we are given a continuous real function ξ(t), 0 ≤ t <∞.
Let s(t); 0 ≤ t < tξ, be the solution of (5.2) with initial condition s(0) = s0.
We write Dt = D(s(t)) ∈ D, t ∈ [0, tξ), and define G ⊂ [0, tξ)×H by
G = ∪t∈[0,tζ) {t}×Dt . G is a domain of [0, tξ)×H because t 7→ Dt is continuous.

We then consider the Cauchy problem for the Komatu-Loewner equation:

d

dt
gt(z) = −2πΨs(t)(gt(z), ξ(t)), g0(z) = z ∈ D0. (5.3)

The next statements then hold true:
(i) Ψs(t)(z , ξ(t)) is jointly continuous in (t, z) ∈ G .
(ii) Ψs(t)(z , ξ(t)), (t, z) ∈ G , is locally Lipschitz continuous in the following sense:
for any (t0, z0) ∈ G , there exist r > 0, ρ > 0, L > 0, such that
V = [(t0 − r) ∨ 0, t0 + r ]× {z : |z − z0| ≤ ρ} ⊂ G and

|Ψs(t)(z1, ξ(t))−Ψs(t)(z2, ξ(t))| ≤ L · |z1 − z2|, for any (t, z1), (t, z2) ∈ V .

(iii) There exists a unique local solution of (5.3).
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. . . . . .

BF and KL equations for a given ξ(t) Solving KL equation for a given continuous ξ(t)

(i) can be shown by a similar argument to §3.1.
using the continuity of t 7→ Dt = D(s(t)) for a given continuous ξ(t)
in place of the continuity of t 7→ Dt for a given Jordan arc γ(t).

The derivative in z of Ψs(t)(z , ξ(t)) is also jointly continuous by virtue of (i) and
the Cauchy integral formula. Therefore we readily get (ii).

(iii) follows from (i) and (ii).

In the above, we may take any set {s(t) ∈ S : t ∈ [0, t1)} of points in S that is
continuous in t in place of a solution of the BF equation (5.2).

In particlular, we can conclude that {gt(z) : t ∈ [0, tγ ]} is the unique solution of
the KL equation (1.6).
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. . . . . .

Basic properties of (s(t), ξ(t)) for a given random curves γ

Basic properties of (s(t), ξ(t)) for a given random curves γ

Let D be the collection of labeled standard slit domains and S ⊂ R3N be the slit
space defined by (5.1). D ∈ D and s ∈ S correspond each other in one-to-one way.
A set F ⊂ H is called a compact H-hull if F is a compact continuium, F = F ∩H
and H \ F is simply connected. We let

D̂ = {D = D ′ \ F : D ′ ∈ D, F compact H−hull F ∩H ⊂ D ′}.

For D ∈ D̂, let

W (D) = {γ = γ(t), 0 ≤ t <∞ : Jordan curve γ[0,∞) ⊂ D},

Ft(D) = σ{γ(s) : 0 ≤ s ≤ t}, F(D) = σ{γ(s) : 0 ≤ s <∞}.

Define a shift operator θt : W (D) 7→ W (D) by (θtγ)(s) = γ(t + s), s ≥ 0.

For D ∈ D̃, z ∈ H, consider a probability measure PD,z on (W (D),F(D))
satisfying

PD,z(γ(0) = z) = 1,

as well as DMP and CI described below:
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. . . . . .

Basic properties of (s(t), ξ(t)) for a given random curves γ

DMP(domain Markov property): for any t ≥ 0 and A ⊂ F(D \ γ[0, t])

PD,z(θ
−1Λ

∣∣Ft) = PD\γ[0,t],γ(t)(Λ), D ∈ D, z ∈ ∂H.

CI (conformal invariance):

for any conformal map f from D ∈ D̂ onto f (D) ∈ D̂,

Pf (D),f (z) = f∗ · PD,z , D ∈ D, z ∈ D.

Consider a random motion Xt = (s(t), ξ(t))(∈ S × R), t ≥ 0,
induced by the random curves γ.
For s ∈ S and ξ ∈ R, define P(s,ξ) by P(s,ξ) = PD(s),(ξ,0).

Then (Xt ,P(s,ξ)) enjoys the time homogeneous Markov property :
{Xt}t≥0 is Ft-adapted and

P(s,ξ)(Xt+s ∈ B
∣∣Ft) = PXt (Xs ∈ B), t, s ≥ 0, B ∈ B(S × R).
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. . . . . .

Basic properties of (s(t), ξ(t)) for a given random curves γ

Brownian scaling property of (Xt ,P(s,ξ))

For a curve γ on D with different parametrizations should be considered as
different elements of W (D),
We call γ ∈ W (D) is of half-plane capacity parameter if at = 2t, t ≥ 0.

W̃ (D) denotes the collection of such elements in W (D).
We assume that

P(s,ξ)(W̃ (D)) = 1, for s = s(D), and for any ξ ∈ R. (6.1)

In addition to (6.1), we assume that P(s,ξ) satisfies (CI)
with respect to the dilation f : for a constant c > 0

f (z) = cz , z ∈ D.

Then (Xt ,P(s,ξ)) enjoys the Brownian scaling property:for any ξ ∈ R,

{1
c
Xc2t , t ≥ 0} under P(cs,cξ) ∼ {Xt , t ≥ 0} under P(s,ξ).
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Basic properties of (s(t), ξ(t)) for a given random curves γ

THANK YOU FOR YOUR ATTENTION
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