Tunneling for spatially cut-off $P(\phi)_2$ -Hamiltonians

Shigeki Aida

Tohoku University

September 24, 2012

Introduction

- Spatially cut-off $P(\phi)_2$ -Hamiltonian $-L + V_\lambda$ is a self-adjoint operator on $L^2(\mathcal{S}'(\mathbb{R}), d\mu)$, where $\lambda = 1/\hbar$.
- Formally:

$$d\mu(w) = \frac{1}{Z} \exp\left(-\frac{1}{2}\left(\sqrt{m^2 - \Delta}w, w\right)_{L^2(\mathbb{R}, dx)}\right) dw$$

- $L + V_{\lambda}$ is unitarily equivalent to

$$-\Delta_{L^{2}(\mathbb{R})} + \lambda U(w/\sqrt{\lambda}) - \frac{1}{2} \operatorname{tr}(m^{2} - \Delta)^{1/2}$$

on $L^{2}(L^{2}(\mathbb{R}, dx), dw)$

Introduction

where

$$U(w) = \frac{1}{4} \int_{\mathbb{R}} (w'(x)^2 + m^2 w(x)^2) dx + V(w),$$

$$V(w) = \int_{\mathbb{R}} : P(w(x)) : g(x) dx,$$

where P is a polynomial bounded below. It is natural to expect that there exists some relations between

- Asymptotic behavior of low-lying spectrum of the operator $-L + V_{\lambda}$ as $\lambda \to \infty$
- Zero points of classical potential function U

Plan of talk*

- 1. Results for Schrödinger operator $-\Delta + \lambda U(\cdot/\lambda)$
- 2. Definition of $P(\phi)_2$ -Hamiltonian
- 3. Main Result 1 : $\lim_{\lambda \to \infty} E_1(\lambda)$
- 4. Main Result 2 :

$$\limsup_{\lambda \to \infty} \frac{\log \left(E_2(\lambda) - E_1(\lambda) \right)}{\lambda} \leq -d_U^{Ag}(-h_0, h_0)$$

5. Properties of Agmon distance d_U^{Ag} and instanton (Existence of minimal geodesic and instanton, etc)

^{*}This talk is based on the paper which will appear in J. Funct. Anal. Vol.263 no.9 (2012), 2689–2753

Results for Schrödinger operators on \mathbb{R}^N

Assume

• $U \in C^{\infty}(\mathbb{R}^N)$, $U(x) \ge 0$ for all $x \in \mathbb{R}^N$ and $\liminf_{|x|\to\infty} U(x) > 0$.

•
$$\{x \mid U(x) = 0\} = \{x_1, \ldots, x_n\}.$$

•
$$Q_i = \frac{1}{2}D^2U(x_i) > 0$$
 for all *i*.

Then the first eigenvalue $E_1(\lambda)$ of $-\Delta + \lambda U(\cdot / \sqrt{\lambda})$ is simple and

$$\lim_{\lambda\to\infty}E_1(\lambda)=\min_{1\leq i\leq n}\operatorname{tr}\sqrt{Q_i}.$$

Tunneling for Schrödinger operators

In addition to the assumptions above, we assume the symmetry of *U*:

•
$$U(x) = U(-x)$$
,

•
$$\{x \mid U(x) = 0\} = \{-x_0, x_0\} \quad (x_0 \neq 0).$$

Let $E_2(\lambda)$ be the second eigenvalue. Then we have (due to Harrell, Jona-Lasinio, Martinelli and Scoppola, Simon, Helffer and Sjöstrand,...)

$$\lim_{\lambda\to\infty}\frac{\log(E_2(\lambda)-E_1(\lambda))}{\lambda}=-d_U^{Ag}(-x_0,x_0),$$

where $d_U^{Ag}(-x_0, x_0)$ is the Agmon distance between $-x_0$ and x_0 :

Tunneling for Schrödinger operators

$$d_{U}^{Ag}(-x_{0}, x_{0}) = \inf \left\{ \int_{-T}^{T} \sqrt{U(x(t))} |\dot{x}(t)| dt \right|$$

$$x \text{ is a smooth curve on } \mathbb{R}^{N}$$
with $x(-T) = -x_{0}, x(T) = x_{0} \right\}.$

Carmona and Simon (1981) gave another representation d_U^{CS} of d_U^{Ag} using an action integral:

$$d_{U}^{CS}(-x_{0}, x_{0}) = \inf \left\{ \int_{-\infty}^{\infty} \left(\frac{1}{4} |x'(t)|^{2} + U(x(t)) \right) dt \\ \left| \lim_{t \to -\infty} x(t) = -x_{0}, \lim_{t \to \infty} x(t) = x_{0} \right\}.$$

Instanton

The minimizing path $x_E = x_E(t)$ ($-\infty < t < \infty$) is called an instanton. The instanton x_E satisfies

$$x''(t) = 2(\nabla U)(x(t)).$$

Remark

The classical Newton's equation corresponding to $-\Delta + U$ is $x''(t) = -2(\nabla U)(x(t))$.

Instanton

Since $U(\pm x_0) = 0$, we have

$$d_{U}^{CS}(-x_{0}, x_{0}) = \inf \left\{ \int_{-T}^{T} \left(\frac{1}{4} |x'(t)|^{2} + U(x(t)) \right) dt \\ \left| x(-T) = -x_{0}, \ x(T) = x_{0}, \ T > 0 \right\}.$$
(*)

Hence, by an elementary inequality $ab \leq \frac{a^2+b^2}{2}$,

$$d_U^{Ag}(-x_0, x_0) \leq d_U^{CS}(-x_0, x_0).$$

• Simon used (*), Feynman-Kac formula and large deviation to prove tunneling estimate.

Free Hamiltonian

Let m > 0. Let μ be the Gaussian measure on $\mathcal{S}'(\mathbb{R})$ such that

$$\int_W S(\mathbb{R}) \langle \varphi, w \rangle^2_{S'(\mathbb{R})} d\mu(w) = \left((m^2 - \Delta)^{-1/2} \varphi, \varphi \right)_{L^2}.$$

Let ${\boldsymbol{\mathcal{E}}}$ be the Dirichlet form defined by

$$\mathcal{E}(f,f) = \int_{W} \left\| \nabla f(w) \right\|_{L^{2}(\mathbb{R},dx)}^{2} d\mu(w) \quad f \in \mathbf{D}(\mathcal{E}),$$

where $\nabla f(w)$ is the unique element in $L^2(\mathbb{R}, dx)$ such that $\lim_{\varepsilon \to 0} \frac{f(w + \varepsilon \varphi) - f(w)}{\varepsilon} = (\nabla f(w), \varphi)_{L^2(\mathbb{R}, dx)}$. The generator $-L(\geq 0)$ of \mathcal{E} is the free Hamiltonian.

Potential function of corresponding classical equation

Let
$$P(x) = \sum_{k=0}^{2M} a_k x^k$$
 with $a_{2M} > 0$.

Let $g \in C_0^{\infty}(\mathbb{R})$ with $g(x) \ge 0$ for all x and define for $h \in H^1(= H^1(\mathbb{R}))$,

$$V(h) = \int_{\mathbb{R}} P(h(x))g(x)dx$$

$$U(h) = \frac{1}{4} \int_{\mathbb{R}} \left(h'(x)^2 + m^2 h(x)^2 \right) dx + V(h)$$

Wick product

We want to consider an operator like

$$-L + \lambda V(w/\sqrt{\lambda})$$
 on $L^2(\mathcal{S}'(\mathbb{R}), d\mu)$.

- Difficulty: w is an element of Schwartz distribution and w(x)^k is meaningless.
- Renormalization is necessary: Wick product $: w(x)^k :$

Potential function of
$$P(\phi)_2$$
 Hamiltonian
For $P = P(x) = \sum_{k=0}^{2M} a_k x^k$ with $a_{2M} > 0$, define

$$\int_{\mathbb{R}} : P\left(\frac{w(x)}{\sqrt{\lambda}}\right) : g(x) dx$$

$$= \sum_{k=0}^{2M} a_k \int_{\mathbb{R}} : \left(\frac{w(x)}{\sqrt{\lambda}}\right)^k : g(x) dx.$$

We write

$$: V\left(\frac{w}{\sqrt{\lambda}}\right): = \int_{\mathbb{R}} : P\left(\frac{w(x)}{\sqrt{\lambda}}\right): g(x)dx$$
$$V_{\lambda}(w) = \lambda: V\left(\frac{w}{\sqrt{\lambda}}\right): .$$

Tunneling for spatially cut-off $P(\phi)_2$ -Hamiltonial

Definition of Spatially cut-off $P(\phi)_2$ -Hamiltonian

• $-L + V_{\lambda}$ is defined to be the unique self-adjoint extension operator of $(-L + V_{\lambda}, \Im C_{h}^{\infty}(\mathcal{S}'(\mathbb{R})))$.

• $-L + V_{\lambda}$ is bounded from below and the first eigenvalue $E_1(\lambda)$ is simple. The corresponding positive eigenfunction $\Omega_{1,\lambda}$ exists.

Main result 1

Assumption (A1) $U(h) \ge 0$ for all $h \in H^1$ and $\mathcal{Z} = \{h \in H^1 \mid U(h) = 0\} = \{h_1, \dots, h_n\}$

is a finite set.

(A2) The Hessian $\nabla^2 U(h_i)$ $(1 \le i \le n)$ is strictly positive.

Remark

Since for any $h \in H^1$,

$$\nabla^2 U(h_i)(h,h) = \frac{1}{2} \int_{\mathbb{R}} h'(x)^2 dx$$
$$+ \int_{\mathbb{R}} \left(\frac{m^2}{2} h(x)^2 + P''(h_i(x))g(x)h(x)^2 \right) dx,$$

the non-degeneracy is equivalent to

$$\inf \sigma(m^2 - \Delta + 4v_i) > 0,$$

where
$$v_i(x) = \frac{1}{2}P''(h_i(x))g(x)$$
.

Main Theorem 1

Theorem Assume (A1) and (A2) and let $E_1(\lambda) = \inf \sigma(-L + V_{\lambda})$. Then

$$\lim_{\lambda\to\infty}E_1(\lambda)=\min_{1\leq i\leq n}E_i,$$

where

$$E_i = \inf \sigma(-L + Q_{v_i}),$$

$$Q_{v_i} = \int_{\mathbb{R}} : w(x)^2 : v_i(x) dx,$$

$$v_i(x) = \frac{1}{2} P''(h_i(x))g(x).$$

Cameron-Martin subspace of μ

Let $H^{s}(\mathbb{R})$ be the Sobolev space with the norm:

$$||\varphi||_{H^s(\mathbb{R})} = ||(m^2 - \Delta)^{s/2}\varphi||_{L^2(\mathbb{R}, dx)}.$$

Let $H = H^{1/2}(\mathbb{R})$. Then H is the Cameron-Martin subspace of μ and μ exists on $W \subset S'(\mathbb{R})$:

$$W = \Big\{ w \in \mathcal{S}'(\mathbb{R}) \mid \\ \|w\|_{W}^{2} = \int_{\mathbb{R}} |(1 + |x|^{2} - \Delta)^{-1} w(x)|^{2} dx < \infty \Big\}.$$

• The triple (W, H, μ) is an abstract Wiener space.

Proof of the first main theorem

- IMS localization argument
- Lower bound estimate on the bottom of the spectrum of $-L + V_{\lambda}$ which follows from logarithmic Sobolev ineqaulities
- Large deviation principle and Laplace method for Wick polynomials (Wiener chaos)
- Gagliard-Nirenberg type estimate:

$$\left\{\int_{\mathbb{R}}|h(x)|^{p}g(x)dx\right\}^{1/p} \leq C||h||_{H^{1/2}}^{a(s)}||h||_{W}^{1-a(s)},$$

where
$$a(s) = 3/(4 - 2s)$$
 and $\frac{p-2}{2p} < s < \frac{1}{2}$.

Tunneling for $P(\phi)_2$ -Hamiltonians

Let

$$E_2(\lambda) = \inf \left\{ \sigma(-L + V_{\lambda}) \setminus \{E_1(\lambda)\} \right\}.$$

It is known that $E_2(\lambda) > E_1(\lambda)$.

We prove that $E_2(\lambda) - E_1(\lambda)$ is exponentially small when $\lambda \to \infty$ in the case where the potential function is double well type.

Second main theorem

Assumption (A3) For all x, P(x) = P(-x) and $Z = \{h_0, -h_0\}$, where $h_0 \neq 0$.

Theorem Assume (A1), (A2), (A3). Then $\limsup_{\lambda \to \infty} \frac{\log (E_2(\lambda) - E_1(\lambda))}{\lambda} \leq -d_U^{Ag}(h_0, -h_0).$

Example

Fix $g \in C_0^{\infty}(\mathbb{R})$.

For sufficiently large a > 0, the polynomial

$$P(x) = a(x^2 - 1)^{2n} - C$$

satisfies (A1), (A2), (A3).

C is a positive constant which depends on a, g.

We define
$$d_U^{Ag}(-h_0, h_0)$$
.

Assumption

In the definition below, we always assume $U(h) \ge 0$ for all h.

Agmon distance on $H^1(\mathbb{R})$

Note that $h_0, -h_0 \in H^1(\mathbb{R})$.

Let $0 < T < \infty$ and $h, k \in H^1(\mathbb{R})$.

Let $AC_{T,h,k}(H^1(\mathbb{R}))$ be the all absolutely continuous paths $c : [0,T] \to H^1(\mathbb{R})$ satisfying c(0) = h, c(T) = k.

We define the Agmon distance between h, k by

$$d_U^{Ag}(h,k) = \inf \left\{ \ell_U(c) \mid c \in AC_{T,h,k}(H^1(\mathbb{R})) \right\},\$$

where

$$\ell_U(c) = \int_0^T \sqrt{U(c(t))} ||c'(t)||_{L^2} dt.$$

Agmon distance on $H^{1/2}(\mathbb{R})$

Agmon metric is conformal to L^2 -metric. However the function U is defined on H^1 . On which space the Agmon distance is naturally defined ?

- For any $h, k \in H^{1/2}(\mathbb{R})$, there exists $u(=u(t,x)) \in H^1((0,T) \times \mathbb{R})$ such that • u(0,x) = h(x) and u(T,x) = k(x), • $\int_0^T \sqrt{U(u(t))} ||u'(t)||_{L^2}^2 dt < \infty$
- $H^1((0,T) \times \mathbb{R} \mid u(0) = h, u(T) = k) \subset \mathcal{P}_{T,h,k,U}$ which is defined in the next slide.

Agmon distance on $H^{1/2}(\mathbb{R})$

(1) Let $h, k \in H^{1/2}$. Let $\mathcal{P}_{T,h,k,U}$ be all continuous paths $c = c(t) \ (0 \le t \le T)$ on $H^{1/2}$ such that

•
$$c(0) = h, c(T) = k,$$

- $c \in AC_{T,h,k}(L^2(\mathbb{R})),$
- $c(t) \in H^1(\mathbb{R})$ for ||c'(t)||dt -a.e. $t \in [0, T]$ and the length of c is finite:

$$\ell_U(c) = \int_0^T \sqrt{U(c(t))} ||c'(t)||_{L^2} dt < \infty.$$

(2) Let $0 < T < \infty$. We define the Agmon distance between $h, k \in H^{1/2}(\mathbb{R})$ by

$$d_U^{Ag}(h,k) = \inf \{ \ell_U(c) \mid c \in \mathcal{P}_{T,h,k,U} \}.$$

Proof in the case of Schrödinger operators

Assume

• $U \in C^{\infty}(\mathbb{R}^N)$, $U(x) \ge 0$ and $\liminf_{|x|\to\infty} U(x) > 0$,

•
$$U(x) = U(-x)$$
,

• { $x \mid U(x) = 0$ } = { $-x_0, x_0$ } ($x_0 \neq 0$),

•
$$\frac{1}{2}D^2U(x_0) > 0.$$

Then for the ground state $\Psi_{1,\lambda}$ of $-\Delta + \lambda^2 U$,

$$\lim_{\lambda\to\infty}\frac{1}{\lambda}\log\Psi_{1,\lambda}(x)=-\min\left(d_U^{Ag}(x,x_0),d_U^{Ag}(x,-x_0)\right).$$

This and estimate on the second eigenfunction implies

$$\lim_{\lambda\to\infty}\frac{\log\left(E_2(\lambda)-E_1(\lambda)\right)}{\lambda}=-d_U^{Ag}(x_0,-x_0).$$

I-function of ground state measure for $P(\phi)_2$ -Hamiltonians Assume (A1), (A2), (A3). Let $d\mu_{\lambda,U} = \Omega_{1,\lambda}^2 d\mu, \quad \mu_U^{\lambda} = (S_{\lambda})_* \mu_{\lambda,U},$ where $S_{\lambda}w = \frac{w}{\sqrt{\lambda}}$. Formally $d\mu_U^{\lambda}(w) = \Psi_{1,\lambda}(w)^2 dw$,

 $\mathbf{V}\lambda$ where $\Psi_{1,\lambda}$ is the ground state for

$$-\Delta_{L^2(\mathbb{R})} + \lambda^2 U(w) - \frac{\lambda}{2} \operatorname{tr}(m^2 - \Delta)^{1/2}.$$

It is natural to conjecture that μ_U^{λ} satisfies the large deviation principle with good rate function I_U :

$$I_{U}(h) = 2\min\left(d_{U}^{Ag}(h_{0},h), d_{U}^{Ag}(-h_{0},h)\right).$$

Assume *U* satisfies (A1), (A2). Let \mathcal{F}_U^W be the set of non-negative bounded globally Lipschitz continuous functions *u* on *W* which satisfy the following conditions. (1) It holds that $0 \le u(h) \le U(h)$ for all $h \in H^1$ and

$${h \in H^1 | U(h) - u(h) = 0} = {h_1, \dots, h_n} = {U = 0}.$$

(2) u is C^2 in $\bigcup_{i=1}^n B_{\delta_0}(h_i)$ for some $\delta_0 > 0$ and

$$\inf \left\{ u(w) \mid w \in \left(\bigcup_{i=1}^{n} B_{\delta}(h_{i}) \right)^{c} \right\} > 0 \quad \text{for any } \delta > 0,$$

where $B_{\delta}(h) = \{ w \in W \mid ||w - h||_{W} < \delta \}.$

(3) The Hessians

$$\nabla^2 \left(U - u \right) \left(h_i \right) \qquad (1 \le i \le n)$$

are strictly positive.

Let $\varphi, \psi \in L^2(\mathbb{R})$. Let $AC_{T,\varphi,\psi}(L^2(\mathbb{R}))$ be the set of all absolutely continuous paths $c : [0,T] \to L^2(\mathbb{R})$ with $c(0) = \varphi$ and $c(T) = \psi$. Let $u \in \mathcal{F}_U^W$. For $w_1, w_2 \in W$, define

• if
$$w_1 - w_2 \in L^2(\mathbb{R})$$
,

$$\rho_u^W(w_1, w_2) = \inf \left\{ \int_0^T \sqrt{u(w_1 + c(t))} ||c'(t)||_{L^2} dt \right|$$

$$c \in AC_{T,0,w_2-w_1}(L^2(\mathbb{R})) \right\}.$$

• if $w_1 - w_2 \notin L^2(\mathbb{R})$, $\rho_u^W(w_1, w_2) = \infty$.

Lemma

Let $u \in \mathcal{F}_{U}^{W}$. (1) Let O be a non-empty open subset of W and set $\rho_{u}^{W}(O, w) = \inf \{\rho_{u}^{W}(\phi, w) \mid \phi \in O\}$. Then

$$\rho_u^W(O, \cdot) \in \mathbf{D}(\mathcal{E}),$$
$$|\nabla \rho_u^W(O, w)|_{L^2(\mathbb{R}, dx)} \leq \sqrt{u(w)} \quad \mu\text{-}a.s.w.$$

(2) Assume (A1), (A2). Set $u_{\lambda}(w) = \lambda u(w/\sqrt{\lambda})$, $E_1(\lambda, u) = \inf \sigma(-L_A + V_{\lambda} - u_{\lambda})$. Then $\lim_{\lambda \to \infty} E_1(\lambda, u)$ exists.

Further define

$$\begin{split} & \underbrace{\rho_{-u}^{W}(w_{1},w_{2})} \\ & = \lim_{\varepsilon \to 0} \inf \bigg\{ \rho_{u}^{W}(w,\eta) \ \Big| \ w \in B_{\varepsilon}(w_{1}), \eta \in B_{\varepsilon}(w_{2}) \bigg\}. \end{split}$$

In the case where $W = H = \mathbb{R}^N$, for any w_1, w_2 , clearly,

$$\sup_{u\in\mathcal{F}_U^W}\rho_u^W(w_1,w_2)=d_U^{Ag}(w_1,w_2).$$

Lemma

Assume (A1), (A2). Then for all $h, k \in H^{1/2}(\mathbb{R})$,

$$d_U^{Ag}(h,k) = \sup_{u \in \mathcal{F}_U^W} \rho^W(h,k).$$

Exponential decay estimate for the ground state measure of $P(\phi)_2$ -Hamiltonian

Lemma

Assume (A1), (A2). Let $d\mu_{\lambda,U}(w) = \Omega_{1,\lambda}^2(w)d\mu$, where $\Omega_{1,\lambda}$ is the ground state of $-L + V_{\lambda}$. Let $r > \kappa$ and 0 < q < 1. Let $B_{\varepsilon}(\mathbb{Z}) = \bigcup_{i=1}^{n} B_{\varepsilon}(h_i)$. For large λ , $\mu_{\lambda,U}\left(\left\{w \in W \mid \rho_u^W\left(\frac{w}{\sqrt{\lambda}}, B_{\varepsilon}(\mathcal{Z})\right) \geq r\right\}\right)$ $\leq \frac{C_1 e^{-2q\lambda(r-\kappa)} ||u||_{\infty}}{\kappa^2 (\lambda(1-q^2)\varepsilon^2 - C_2)},$

where C_i are positive constants independent of λ , r, κ .

Proof of second main theorem

$$E_{2}(\lambda) - E_{1}(\lambda)$$

= $\inf \left\{ \frac{\int_{W} |\nabla f(w)|^{2}_{L^{2}} d\mu_{\lambda,U}(w)}{\int_{W} f(w)^{2} d\mu_{\lambda,U}(w)} \right|$
 $f \in \mathbf{D}(\mathcal{E}) \cap L^{\infty}(W,\mu), f \neq 0, f \perp 1 \text{ in } L^{2}(\mu_{\lambda,U}) \right\}.$

Assume (A1), (A2), (A3).

•
$$\mathcal{Z} = \{h_0, -h_0\}.$$

• $\mu_{\lambda,U}$ concentrates on neighborhoods of $\pm \sqrt{\lambda}h_0$.

Proof of second main theorem

• Let *f* be the function such that

$$f(w) = \begin{cases} 1 & \text{for } w \text{ near } \sqrt{\lambda}h_0 \\ -1 & \text{for } w \text{ near } -\sqrt{\lambda}h_0. \end{cases}$$

Then $f \perp 1$ approximately in $L^2(\mu_{\lambda,U})$.

• f can be constructed by using functions $\rho_u^W \left(w / \sqrt{\lambda}, B_{\varepsilon}(h_0) \right), \rho_u^W \left(w / \sqrt{\lambda}, B_{\varepsilon}(-h_0) \right).$ Also $\|\nabla f\|_{\infty} < \infty$ and

$$\operatorname{supp}|\nabla f| \subset \left\{ w \left| \rho_u^W \left(\frac{w}{\sqrt{\lambda}}, B_{\varepsilon}(\mathcal{Z}) \right) \approx \frac{\underline{\rho}_u^W(h_0, -h_0)}{2} \right\} \right\}$$

Properties of Agmon distance and instanton

- d_U^{Ag} can be extended to a continuous distance function on $H^{1/2}(\mathbb{R})$.
- The topology on $H^{1/2}(\mathbb{R})$ defined by d_U^{Ag} coincides with that of $(H^{1/2}(\mathbb{R}), || ||_{H^{1/2}})$.
- Let P = 0. For any $h \in H^{1/2} \setminus H^1$ and $k(\neq 0) \in H^{1/2}$, $\limsup_{\varepsilon \to 0} \frac{d_U^{Ag}(h, h + \varepsilon k)}{\varepsilon} = +\infty$.
- Existence of minimal geodesic between h₀ and -h₀ (unique or not?).
- Existence of instanton.

Existence of minimal geodesic

Theorem

Assume (A1), (A2) and \mathcal{Z} consists of two points $\{h, k\}$. There exists a continuous curve c_{\star} on $H^{1/2}(\mathbb{R})$ such that $d_U^{Ag}(h,k) = \int_{a}^{1} \sqrt{U(c_{\star}(t))} ||c'_{\star}(t)||_{L^2} dt$ and c_{\star} satisifies the following. (1) $c_{\star}(0) = h$, $c_{\star}(1) = k$ and $c_{\star}(t) \neq h$, k for 0 < t < 1. (2) $c_{\star} = c_{\star}(t, x)$ is a C^{∞} function of $(t, x) \in (0, 1) \times \mathbb{R}$ and $c_{\star} \in H^1((\varepsilon, 1 - \varepsilon) \times \mathbb{R})$ for all $0 < \varepsilon < 1$. (3) $\int_0^{\varepsilon} ||c'_{+}(t)||^2_{L^2} dt = \int_{1-\varepsilon}^1 ||c'_{+}(t)||^2_{L^2} dt = +\infty \ \forall \varepsilon > 0.$

$$\frac{\partial^2 u}{\partial t^2}(t,x) = 2(\nabla U)(u(t,x)) \tag{1}$$

The equation (1) reads

$$\frac{\partial^2 u}{\partial t^2}(t,x) + \frac{\partial^2 u}{\partial x^2}(t,x) = m^2 u(t,x) + 2P'(u(t,x))g(x) \quad (2)$$

Let T > 0 and define

$$I_{T,P}(u) = \frac{1}{4} \iint_{(-T,T)\times\mathbb{R}} \left(\left| \frac{\partial u}{\partial t}(t,x) \right|^2 + \left| \frac{\partial u}{\partial x}(t,x) \right|^2 \right) dt dx \\ + \iint_{(-T,T)\times\mathbb{R}} \left(\frac{m^2}{4} u(t,x)^2 + P(u(t,x))g(x) \right) dt dx$$

and

$$I_{\infty,P}(u) = \frac{1}{4} \int_{-\infty}^{\infty} \left\| \partial_t u(t) \right\|_{L^2(\mathbb{R})}^2 dt + \int_{-\infty}^{\infty} U(u(t)) dt.$$

There exists a solution $u_{\star} = u_{\star}(t, x)$ $((t, x) \in \mathbb{R}^2)$ to the equation (2) which satisfies the following properties.

(1) It holds that $u_{\star}|_{(-T,T)\times\mathbb{R}} \in H^1((-T,T)\times\mathbb{R}) \cap C^{\infty}((-T,T)\times\mathbb{R})$ for any T > 0 and

$$I_{T,P}(u_{\star}|_{(-T,T)\times\mathbb{R}}) = \inf\{I_{T,P}(u) \mid u \in H^{1}_{T,u_{\star}(-T),u_{\star}(T)}(\mathbb{R})\},$$

where

$$H^1_{T,\varphi,\psi}(\mathbb{R}) = H^1((-T,T) \times \mathbb{R} \mid u(-T) = \varphi, u(T) = \psi).$$

Also we have

$$\lim_{t\to-\infty} ||u_{\star}(t) - h||_{H^{1/2}} = 0$$
$$\lim_{t\to\infty} ||u_{\star}(t) - k||_{H^{1/2}} = 0.$$

(2) It holds that $I_{\infty,P}(u_{\star}) = d_U^{Ag}(h, k)$ and u_{\star} is a minimizer of the functional $I_{\infty,P}$ in the set of functions u satisfying the following conditions:

•
$$u|_{(-T,T)\times\mathbb{R}} \in H^1((-T,T),\mathbb{R})$$
 for all $T > 0$,

•
$$\lim_{t \to -\infty} ||u(t) - h||_{H^{1/2}} = 0,$$

$$\lim_{t \to \infty} ||u(t) - k||_{H^{1/2}} = 0.$$

3) Let $I(T) = \inf \left\{ I_{T,P}(u) \mid u \in H^1_{T,h,k}(\mathbb{R}) \right\}.$ Then
 $T \mapsto I(T)$ is a strictly decreasing function and

$$\lim_{T \to \infty} I(T) = d_U^{Ag}(h, k).$$

Relation between c_{\star} and u_{\star}

Let

$$\begin{split} \rho(t) &= \frac{1}{2d_U^{Ag}(h,k)} \int_{1/2}^t \|c'(s)\|_{L^2}^2 ds \quad 0 < t < 1, \\ \sigma(t) &= \frac{1}{2d_U^{Ag}(h,k)} \int_{-\infty}^t \|u'(s)\|_{L^2}^2 ds \quad t \in \mathbb{R}. \end{split}$$

Then $\rho^{-1}(t) = \sigma(t)$ ($t \in \mathbb{R}$) and

$$u_{\star}(t,x) = c_{\star}(\sigma(t),x) \quad t \in \mathbb{R},$$

$$u(\rho(t),x) = c(t,x) \quad 0 < t < 1.$$

Problems

• Lower bound estimate. WKB approximation. Precise estimate of $E_2(\lambda) - E_1(\lambda)$:

$$E_2(\lambda) - E_1(\lambda) = \exp(-\lambda d_U^{Ag}(h_0, -h_0)) \sum_{j=0}^{\infty} a_j \left(\frac{1}{\sqrt{\lambda}}\right)^{2j+1}$$

- Geometry of Agmon distance
- Relation between
 - Scattering of spatially cut-off
 P(φ)₂-Hamiltonian (or P(φ)₂-field itself after taking ∞-volume limit)
 - Scattering of non-linear Klein-Gordon equation (classical equation)

Appendix : Proof of $d_{II}^{Ag}(h, k) = \sup_{u} \rho^{W}(h, k)$

Take large *L* so that supp $g \in [-L/8, L/8]$. Let $w_L = \chi_L \cdot w$, where $\chi_L(x) = 1$ for $|x| \le L/4$, supp $\chi_L \subset I = (-L/2, L/2)$.

Let P_N be a finite dimensional projection operator on $H_D^s(I, dx)$. Define

$$\begin{split} u_{R,\varepsilon,N,L,\delta}(w) &= \left(\varepsilon\varepsilon_{0}\min\left(u_{\mathcal{Z}}(w),2R^{2}\right) + (1-\varepsilon)^{3}U(P_{N}w_{L})\right)\psi(w) \\ &+ \min\left(\varepsilon_{0}u_{\mathcal{Z}}(w),2R^{2}\right)(1-\psi(w)), \\ u_{\mathcal{Z}}(w) &= \min_{i=1,2}||w-h_{i}||_{W}^{2}. \text{ Then} \\ u_{R,\varepsilon,N,L,\delta} \in \mathcal{F}_{U}^{W}, \quad \sup_{R,N,L,\delta,\varepsilon}\rho_{-u_{R,\varepsilon,N,L,\delta}}^{W}(h,k) = d_{U}^{Ag}(h,k). \end{split}$$

Appendix: Proof of $d_U^{Ag}(h, k) = \sup_u \rho_u^W(h, k)$ ψ is defined as follows:

$$\begin{split} W_{R,N,L,\delta} &= \left\{ w \in W \ \Big| \ \|P_N w_L\|_{H_D^{1/2}(I)} \le R, \\ \|P_N^{\perp} w_L\|_{H_D^{-2}(I)} \le R, \min_{i=1,2} \|P_N w_L - h_i\|_{H^1(\mathbb{R})} \ge \delta \right\}, \\ \text{where } h_1 &= h_0, h_2 = -h_0. \\ \psi(w) &= \frac{d_W(w, \overline{W_{R,N,L,\delta}^c})}{d_W(w, W_{R/2,N,L,2\delta}) + d_W(w, \overline{W_{R,N,L,\delta}^c})}. \end{split}$$