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Abstract: Stability of Two-wheeled vehicles depends on their running speed. The running vehicle
at high speed is stable but the vehicle in a state of stillness is unstable. In order to stabilize Two-
wheeled vehicles in the state of stillness, center-of-gravity movement and handle operation by the
rider are indispensable. Then we develop a stationary self-sustaining Two-wheeled vehicle which
is a two-wheeled vehicle equipped with a cart system to move a center-of-gravity of the vehicle
for stabilizing the system. We derive a state space model of system based on Lagrange method
and identified model parameters by control experiments. A robust attitude controller is designed
via H∞ Loop Shaping Design Procedure (LSDP). Experimental results show an effectiveness of
the derived mathematical model and the designed robust attitude controller compared with LQ
controller.
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1. Introduction

Stability of Two-wheeled vehicles depends on their run-
ning speed. The running vehicle at high speed is stable
but the vehicle in a state of stillness is unstable. There-
fore, Two-wheeled vehicle has been researched consider-
ably for a long time. In 1971, analysis of going straight
stability with four degrees of freedom models of Two-
wheeled vehicle is done by Sharp1). This has progressed
theoretical analysis of Two-wheeled vehicle and stability
analysis. The model of Sharp expressed a characteristic
of Two-wheeled vehicle in a running, and it is a non-
linear model. However, handling becomes difficult from
complexity of the model if we will build a control system
with the model. The analysis of a basic characteristic of
Two-wheeled vehicle that uses the linear theory was al-
ready reported2)3). But, Two-wheeled running vehicle
was treated in this research result.

On the other hand, as for the research about stabi-
lization of Two-wheeled vehicle, there are two research
results by Tanaka4) and Kamata5). These researches
target Two-wheeled vehicle that makes it run in low
speed, and the handle operation is considered. How-
ever, in the state of stillness and the rider are not con-
sidered. In order to stabilize Two-wheeled vehicles in
the state of stillness, center-of-gravity movement and
handle operation by the rider are indispensable.

Then we develop a stationary self-sustaining Two-
wheeled vehicle which is a two-wheeled vehicle equipped
with a cart system to move a center-of-gravity of the
vehicle for stabilizing the system. We derive a state
space model of the system based on Lagrange method
and identify the model parameters by control experi-
ments. A robust attitude controller is designed via H∞
Loop Shaping Design Procedure (LSDP). Experimental
results show an effectiveness of the derived mathemat-

ical model and the designed robust attitude controller
compared with LQ controller.

2. Composition and Modeling of
an Experimental System

2.1 Composition of an Experimental
System

Potentiometer

Encoder

Encoder

DC moter

DC moter

DC moter

Figure 1: Overview of experimental system

Figure 1 is a photograph of the experimental system.
The two-wheeled vehicle consists of three parts. There
are a cart system that corresponds to the rider’s center-
of-gravity movement, a steering system (a front part) for
steering, and a body (a rear part). the front part and
the rear part are structures that finish being movable
through a steering axis. A cart system and a steering
system are driven by DC servo motor, and DC motors
are controlled by servo amplifier which contains the ve-
locity control system. Bike angle and cart position are
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Table 1: Definition of Symbols
Mf , Mr, Mc Mass of each part
Hf , Hr, Hc Vertical length from a floor to a center-of-gravity of each part
LFf , LF Horizontal length from a front wheel rotation axis to a center-of-gravity of part of front wheel

and steering axis.
Lr, LR Horizontal length from a rear wheel rotation axis to a center-of-gravity of part of rear wheel

and steering axis.
Lc Horizontal length from a rear wheel rotation axis to a center-of-gravity of the cart system.
Jx Moment of inertia around center-of-gravity x axially.
Jfz Moment of inertia for part of front wheel z axially.
Jz Moment of inertia for part of rear wheel that contains cart system z axially.
µx Viscous coefficient around x axis.
µfz Viscous coefficient for part of front wheel around z axis.
µz Viscous coefficient for part of rear wheel that contains cart system around z axis.
µc A viscosity coefficient of a movement direction of the cart system
subscript f , r, c Part of front wheel, rear wheel, and cart system respectively

measured by encoders. Handle angle is measured by a
potentiometer.

A system’s length is about 70 [cm], width is about 57
[cm], height is about 40 [cm], and weight is about 10
[kg]. Movable ranges of a cart system is ±25 [cm], and
a steering system is ±0.5 [rad] respectively.

We used MATLAB, Simulink for a controller design
and used dSPACE DSP-CIT for control experiments.

2.2 Preliminary

Figure 2 shows a model of Two-wheeled vehicle. We
assume that Two-wheeled vehicle is stabilized by the
cart movement d(t) and the handle operation ψ(t). The
control inputs are the voltage uc(t), uh(t) to add to an
amplifier. We assume that cart position d(t), handle
angle ψ(t), and bike angle φ(t) can be measured directly.
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Figure 2: Two-wheeled vehicle model

For modeling, we consider the following assumptions.

1. The contact points on the ground of a front wheel
and a rear wheel are set as the x axis, the y axis

is orthogonal to the x axis, the z axis is vertical
upward.

2. The bike angle φ(t), cart position d(t), and handle
angle ψ(t) can be measured directly.

3. Two-wheeled vehicle is a structure that a front part
and a rear part are connected with a steering axis.

4. The bike angle, cart position, and handle angle are
small enough.

5. The center-of-gravity movement x axially and z ax-
ially by the handle operating are omitted.

6. The tire does not slip horizontally.

7. Two-wheeled vehicle is a rigid body, and the twist
is not occurred.

8. A cart system and a steering system are driven by
DC servo motor, and DC motors are controlled by
servo amplifier which include the velocity control
system.

9. The state variables which are differentiated twice
are small enough. They can be omitted.

Table 1 shows the definition of the symbols in the ex-
pressions.

2.3 Yaw angle θ(t)

Yaw angle θ(t) occurs between a rear part and the x axis
by the handle operating. We cannot measure Yaw angle
θ(t) directly. We can obtain it from the next expressions
based on the geometric relations in Figure 3.
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Figure 3: Relation between Steer angle ψ(t) and Yaw
angle θ(t)

tan θ(t) =
LF sinψ(t)

LF cos ψ(t) + LR
(1)

θ(t) = tan−1(A)

= sin−1 A√
1 + A2

= cos−1 1√
1 + A2

(2)

A =
LF sinψ(t)

LR + LF cos ψ(t)

2.4 Center-of-gravity coordinates of a
front part and a rear part

Figure 4 shows the center-of-gravity coordinates of the
front part and the rear part. (a) and (b) in Figure 4
show the system with a turned handle, but Two-wheeled
vehicle is not falling. (c) shows Two-wheeled vehicle is
falling φ(t) from a state of (a) and (b).

When the handle is turned, Yaw angle θ(t) is oc-
curred, and, the rear part has a few inclinational angle.
Therefore, the center-of-gravity movement z axially is
occurred. This variance is omitted from assumption,
the center-of-gravity coordinates of a front part (yf , zf )
and a rear part (yr, zr) are obtained as next expressions.{

yf = Hf sinφ(t) + LFf sin {ψ(t) − θ(t)} cos φ(t)
zf = Hf cos φ(t) − LFf sin {ψ(t) − θ(t)} sin φ(t)

(3){
yr = Hr sin φ(t) + Lr sin θ(t) cos φ(t)
zr = Hr cos φ(t) − Lr sin θ(t) sinφ(t)

(4)

2.5 Center-of-gravity coordinate of a
cart system

Figure 5 shows the center-of-gravity coordinates of a
cart system. (a) and (b) in figure 5 show the system
with the turned handle, but Two-wheeled vehicle is
falling. (c) shows Two-wheeled vehicle is falling φ(t)
from a state of (a) and (b).

When a handle is turned, the center-of-gravity move-
ment z axially is occurred. But, this variance is omitted
from the assumptions, the center-of-gravity coordinates
of a cart system (yc, zc) is obtained by the next expres-
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Figure 4: Center-of-gravity coordinates of a front part
and a rear part
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Figure 5: Center-of-gravity coordinates of cart

sions.{
yc = Hc sin φ(t) + {Lc sin θ(t) − d(t) cos θ(t)} cos φ(t)
zc = Hc cos φ(t) − {Lc sin θ(t) − d(t) cos θ(t)} sin φ(t)

(5)

2.6 Derivation of an equation of motion

From (3), (4) and (5), the motion energy T , the poten-
tial energy U , and the lost energy F are derived. Then,
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following expressions are obtained.

T =
1
2
Mf

(
ẏf

2 + żf
2
)

+
1
2
Mr

(
ẏr

2 + żr
2
)

+
1
2
Mc

(
ẏc

2 + żc
2
)

(6)

+
1
2

{
Jxφ̇2 + Jz

(
θ̇ cos φ

)2

+ Jfz

(
ψ̇ cos φ

)2
}

U = g (Mfzf + Mrzr + Mczc) (7)

F =
1
2
µcḋ

2 +
1
2
µxφ̇2 +

1
2
µz

(
θ̇ cos φ

)2

+
1
2
µfz

(
ψ̇ cos φ

)2

(8)

Above expressions are substituted for Lagrange’s mo-
tion equation described as

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+

∂U

∂qi
+

∂F

∂q̇i
= τi. (9)

But, from the assumptions, the motion equation of a
cart system and a handle system are expressed by the
following equations.{

d̈(t) + αḋ(t) = βuc(t)
ψ̈(t) + γψ̇(t) = δuh(t)

(10)

Where, α, β, δ, and γ are physical parameters of the
motor systems.

Therefore, we solve it by the generalized coordinates
qi = φ(t) and the external force τi = 0. We use the Tay-
lor expansion in the equilibrium (d(t) = φ(t) = ψ(t) =
0) neighborhood and the variable differentiated twice or
more are omitted, the motion equation of next expres-
sion is obtained.{

Jx + MfH2
f + MrH

2
r + McH

2
c

}
φ̈ + MfLFfHf ψ̈

−McHcd̈ + µxφ̇ + gMcd

−g(MrLr + McLc − MfLFf )ψ
LF

LF + LR

−gMfLFfψ − gφ(MfHf + MrHr + McHc) = 0
(11)

2.7 Derivation of the state space model

We substitute (10) into (11) and arrange it, we obtained
the final state space linear model shown in the following
expressions.

ẋ = Ax + Bu

y = Cx
(12)

where,

x =
[

d(t) φ(t) ψ(t) ḋ(t) φ̇(t) ψ̇(t)
]T

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −α 0 0

a51 a52 a53 a54 a55 a56

0 0 0 0 0 −γ

 , B =


0 0
0 0
0 0
β 0
b51 b52

0 δ



C =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , u =
[

uc(t) uh(t)
]T

a51 = −Mcg

den
, a52 =

(MfHf + MrHr + McHc) g

den
,

a53 =
{MrLrLF + McLcLF + MfLFfLR} g

(LR + LF ) den
,

a54 = −McHcα

den
, a55 = − µx

den
, a56 =

MfHfLFfγ

den
,

b51 =
McHcβ

den
, b52 = −MfHfLFfδ

den

den = MfH2
f + MrH

2
r + McH

2
c + Jx

Unknown parameters in above expressions were iden-
tified by control experiments. Table 2 shows physical
parameters of The Two-wheeled vehicle.

Table 2: Physical parameters of Two-wheeled vehicle
Parameter Value Parameter Value

Mf [kg] 2.14 Hf [m] 0.0800
Mr [kg] 5.91 Hr [m] 0.161
Mc [kg] 1.74 Hc [m] 0.0980
LFf [m] 0.0390 LF [m] 0.133
Lr [m] 0.128 LR [m] 0.308
Lc [m] 0.259
Jx [kgm2] 0.2 µx [kgm2/s] 0.333
α 905 β 255
γ 98.96 δ 222.07

3. Controller design

3.1 H∞ Loop Shaping Design Procedure

We used LSDP6)7) for the controller design. The open
loop characteristic of the model is improved in LSDP
with prepositive compensator W and a postpositive
compensator V . Here, the prepositive compensator W
was set to a frequency weight, and the postpositive com-
pensator V was set to a constant weight.

W G V

¥
K

s
G

W V
¥

K

G

K

Figure 6: The loop shaping design procedure

W (s) = diag
([

Wc(s) Wh(s)
])

Wc(s) =
12.8

s + 10
, Wh(s) =

1
s + 1

V = diag
([

40 40 40
]) (13)

The controller was designed by using MATLAB. When
(13) are used, we have γmin = 13.3272. Therefore, we
used γ = 1.05 × γmin for the controller design.
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3.2 Optimal Regulator (LQ)

The optimal regulator is one of the state feedback con-
trol, and derives the feedback gain F of the control input
u = −Fx which minimize the following cost function.

J =
∫ ∞

0

(
xT Qx + uT Ru

)
dt (14)

Where, weight Q ≥ 0 and R > 0 were set respectively
as

Q = diag
([

80 50 150 10 1 1
])

R =
[

1 0
0 3

]
.

(15)

The all states are necessary to use the feedback gain
by the optimal regulator method. However, we can get
only one part (d(t), φ(t), ψ(t)) of them. Then, we use
the observer. Where, we use the pole placement method
for designed the state observer. the observer poles were
moved −25 from the regulator poles.

When we considered the system as a controller which
is from model outputs y(t) to operations u(t) and this
system is composed as shown in Figure 7. This system
is called as LQ controller.
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Figure 7: Configuration of LQ controller

3.3 Open Loop Characteristics

Figure 8, 9 show the open loop characteristic GK for
the designed controllers.

The both controllers had a similar gain characteristics
at the low frequency. However, LSDP controller has a
low gain characteristic compared with LQ controller at
the high frequency, and it means the controller should
have robustness at the high frequency.

4. Attitude Control Experiments

The attitude control experiments are done by using the
designed controllers. We experiment on the step re-
sponses and the impulse disturbance responses. Sta-
bilization by the designed controllers was able to be
achieved. As a result, the effectiveness of the indepen-
dent self-sustaining two-wheeled vehicle and the derived
two-wheeled vehicle model was able to be proven.

10
-1

10
0

10
1

10
2

10
3

10
4

-150

-100

-50

0

50

100

Frequency [Hz]

G
ai

n
[d

B
]

10
-1

10
0

10
1

10
2

10
3

10
4

-600

-400

-200

0

200

Frequency [Hz]

P
ha

se
[d

e
g]

10
-1

10
0

10
1

10
2

10
3

10
4

-150

-100

-50

0

50

100

Frequency [Hz]

G
ai

n
[d

B
]

10
-1

10
0

10
1

10
2

10
3

10
4

-600

-400

-200

0

200

Frequency [Hz]

P
ha

se
[d

e
g]

Figure 8: Frequency response of GK for LSDP con-
troller
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Figure 9: Frequency response of GK for LQ controller

4.1 Step Responses

-0.03 [m], -0.05 [rad] and 0.07 [rad] were given to the
cart position, bike angle, and handle angle respectively
as step references. Figure 10 shows the response results.
The step value was inputted at 1 [sec] on the graphs.

The above graphs show cart position, bike angle, and
handle angle respectively. The solid lines are LSDP
controller’s responses, and the dashed lines are LQ con-
troller’s responses.

When both responses are compared, the response of
cart position and bike angle are similar. LSDP con-
troller is only a little vibrating in all responses. How-
ever, both controllers’ responses are corresponding to
the step value, and stabilization can be achieved.

4.2 Impulse Disturbance Responses

Figure 11 shows the impulse disturbance response re-
sults. The impulse disturbance voltage of 10 [N] con-
siderably is added to the operation voltage of the cart
for 0.1 sec. As well as the step response, cart posi-
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Figure 10: Step responses
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Figure 11: Impulse disturbance responses

tion, body angle and handle angle are shown in Figure
11 respectively. The solid lines are LSDP controller’s
responses, and the dashed lines are LQ controller’s re-
sponses. The disturbance was inputted at 1 [sec] on the
graphs.

In the step responses, the difference did not appear
in the responses by both controllers. However, the dif-
ference appeared to both responses in the impulse dis-
turbance responses. LSDP controller showed a better

result in which the attitude change after disturbance
was inputted compared with LQ controller. Especially,
LQ controller has caused the attitude change. On the
other hand, after disturbance was input, LSDP con-
troller hardly operates the handle, and seems to control
the large attitude change caused by the handle vibra-
tion. As a result, the LSDP controller has a better
robustness.

5. Conclusions

In this paper, we developed a stationary self-sustaining
Two-wheeled vehicle which is a two-wheeled vehicle
equipped with a cart system to move a center-of-gravity
of the vehicle for stabilizing the system. A motion equa-
tion of the model was derived by the Lagrange method.
The two-wheeled vehicle model limited in the stationary
was derived. The controllers were designed by LSDP
and LQ, and both controllers stabilized Two-wheeled
vehicle. In the impulse disturbance response, LSDP
controller showed a better result. As a results, the effec-
tiveness of the independent self-sustaining two-wheeled
vehicle and the derived two-wheeled vehicle model was
able to be proven. In the future, we will design a control
system for the running two-wheeled vehicle and evalu-
ate the effectiveness.
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