正 小林 泰秀*

慣性負荷変動を考慮したベルト駆動二慣性系のロバスト制御

Robust Control of belt driving two inertial systems with consideration of load inertial variation

〇米沢 友孝*

正 佐藤 拓史**

Hiroshi Satoh**

Tomoyuki Yonezawa* Yasuhide Kobayashi* *Nagaoka University of Technology : Kamitomioka-cho1603-1, Nagaoka-shi, Niigata 940-2188 Japan **Nagaoka National College of Technology : Nishikatakai-maci888, Nagaoka-shi, Niigata 940-8532 Japan Key Words: Robust Control, Gain-Scheduling Control

1. 緒言

市販のサーボモータにはオートチューニング,チューニン グレスといった PID を基礎とするゲインの自動調整が広く 行われている(1)(2). しかし PID 補償器は構造が単純であるた め、制御対象が低剛性、高慣性比の場合、ゲイン調整が困難 になるという欠点がある.このような制御対象の例として本 論文では柔軟ベルトを含むベルト駆動二慣性系の速度制御 問題を考える.ベルト駆動系は低コスト,機構の自由度が高 いなどの特性を持ち産業用ロボットや搬送作業など多くの 場面で用いられる.その一方で、ベルト駆動系は強度、振動、 騒音などの欠点も有しておりベルト駆動系の剛性に関する 研究も行われている(3).

また,先にあげたオートチューニングなどは性能保証が十 分ではなく,ユーザーが調整すべきパラメータが残っている のが現状である.しかしロバスト制御を用いれば系統的な設 計手法に基づき閉ループ系の性能を補償することができる. さらにゲインスケジューリングを用いればプラントの先見 情報を積極的に利用し制御性能を向上させることもできる.

本論文では、慣性負荷変動を持つベルト駆動二慣性系の速 度制御問題に対して、慣性モーメントをパラメータとするゲ インスケジューリング(以降 GS と呼ぶ)補償器を設計し,慣 性負荷変動を一つの補償器で考慮するロバスト補償器に対 する有効性を実験的に検証することを目的とする.

実験装置

実験装置の概要を Fig.1 に示す.装置の左端に AC サーボ モータ(安川電機Σ-V シリーズ SGMAV-02A), 右端に慣性負 荷を設置しベルトで接続する(歯付ベルト,*l*=1771.65,z=186). 本論文では二種類のアルミニウム円盤(045.70, =25)を付 け替え実験を行う(以降,慣性モーメントが小さいものをd1, 大きいものを d2 とする). 円盤の形状等から算出した負荷側 慣性モーメント J_L は d1 で 2.26×10⁻⁴(kgm²), d2 で 6.23×10⁻⁴(kgm²) , 駆動側慣性モーメントは J_M=7.57×10⁵(kgm²)である(ベルトの質量は無視).

Fig.2 Closed-loop system

制御系のブロック線図を Fig.2 に示す. Pは制御対象, K は補償器である. Pの入力 uはモータの駆動トルク, yは モータの回転速度である.yを目標速度rに近づけるように モータのトルクuを制御するKを求める問題を考える.その 結果外乱速度 dが yに与える影響が小さくなる.

3. プラントモデルの同定 3-1 周波数応答実験

uを正弦波状に変化させてuからyまでの周波数応答実験を 行う.実験結果をFig.3の点に示す.濃い点がd1,薄い点が d2の場合である.d1の方がプラントのゲインが高く,共振周 波数も高いことがわかる.本論文では簡単のため,低周波域 のゲイン変動に重点を置きプラントモデルを決定する.

- (a) ロバスト制御: 負荷変動を未知とし, 負荷変動に依存 しないノミナルプラントPO(s)を設計する.
- (b) GS制御: 負荷変動を既知とし, 負荷変動に依存するノ ミナルプラントP0(J,s)を設計する.

ロバスト制御用のノミナルプラントPO(s)はd1,d2の周波 数応答実験の結果を平均したものを,部分空間同定法を用い て5次近似することにより求めた.この周波数応答をFig.3の 破線に示す. ゲイン特性は二つの周波数応答実験の結果の中 間にあることがわかる. GS制御用のノミナルプラント PO(J,s)は $PO(J,s)=\overline{J}/J \times PO(s)$ とおく. ここで $J=J_M+J_L$ とし, $\overline{J} = J_M + (J_L(d1) + J_L(d2))/2$ とする. d1,d2に対するノミナルプ ラントの周波数応答をそれぞれFig.3の実線に示す.低周波数 域において,周波数応答実験結果をよく近似していることが わかる.

Fig.3 Frequency response of plant 3-2 モデル化誤差の見積り

モデル化誤差に対する安定性を保証するため,本論文で は乗法的摂動モデル P(s) = P0(s)(1 + W_T(s)Δ(s))を導入す る. モデル化誤差PIP0-1のゲイン特性をFig.4の濃い点 (ロ バスト制御),薄い点(GS制御)に示す. それぞれの重み関 数Wr(s)は以下の式で表し破線および実線に示す.慣性負荷 の情報を利用することにより,低周波数域でモデル化誤差 が小さくなっていることがわかる.

$$W_T(s) = k_T \frac{(s + \omega_{T1})\omega_{T2}}{(s + \omega_{T2})\omega_{T1}}$$

 $\omega_{T1} = 2\pi \times 5$, $\omega_{T2} = 2\pi \times 2000$ この際, krをロバスト制御の場合0.7, GS制御の場合0.4

Fig.4 Magnitude plot of modeling error and weighting function

4. 補償器設計

4-1 ロバスト制御系設計

モデル化誤差に対するロバスト安定化を図るため H_{*}制御 問題(混合感度問題)を解いて補償器を求める:

(i)閉ループ系が内部安定.

Fig.4 H_∞ control problem

ここでPO(s)は前節で求めたノミナルプラント, $W_{7}(s)$ は重み関数である. $W_{s}(s)$ は性能重みで, $W_{s}(s)=30\times ws1/(s+ws1)$ とした.余裕を見て, 閉ループ系のH_wノルムが約0.85となるように*ks*=30として*KO(s)*を求めた.

4-2 GS制御系設計

 $K(s)= J/J \times KO(s)$ とおけばノミナルプラントの係数J/Jが相殺され,設計問題は慣性負荷に依存しない問題に帰着される.すなわち,前述のロバスト制御系設計において, W_T をGS制御用のものに置き換えた問題を解いてKO(s)を求める. $W_s(s)$ は上記と同様で,閉ループ系のH_•ノルムが約0.85となるようにks=80とした.

4-3 補償器の比較

補償器のボード線図をFig.5に示す.d1に対するGS補償器 は、ロバスト制御と同等の性能しか期待できないが,d2に対 するGS補償器はロバスト補償器よりも大きなゲイン特性を 有しており、良い性能が期待できる.得られた補償器は,ン プリング周期0.25(ms)で離散化し,制御実験に用いる.

Fig.5 Bode diagram of controller

5. 速度制御実験 5-1 ロバスト制御実験

目標速度 r を 5(rad/sec)→10(rad/sec) →5(rad/sec)とステ ップ状に変化を与えた.時間応答を Fig.6(d1), Fig.7(d2)に示 す. d1 では二つの補償器に大きな差はないが, d2 では GS 制御の方が立ち上がり, 定常偏差ともよい性能を示している. ロバスト補償器, GS 補償器を用いた場合のモータの駆動ト ルクを Fig.8 に示す(濃い:ロバスト補償器, 薄い:GS 補償 器). d2 の場合, GS 制御の駆動トルクが大きく変化しており, 慣性負荷に依存したより積極的な補償器となっていること がわかる.

6. 結言

プラントのパラメータを利用しないロバスト制御系に対して、プラントのパラメータを利用する GS 制御系を構成し後者の利点を実験的に示した.

今後の課題として, 共振周波数を含む中間周波数帯域にお ける動特性変動をプラントモデルに取り込んだ場合につい て検討する.

7.文献

(1)安川電機株式会社:Σ-V シリーズユーザーマニュアル設 計保守編 資料番号 SIJP S800000 45E

(2)三菱電機株式会社:三菱電機 MR-J3-□A サーボアンプ技術資料集

(3)李 亨・武居直行・古荘純次・田中秀明:「サーボ駆動系としての歯付ベルトの剛性に関する研究」,日本機械学会論文集(C編) 69-681, pp162-169 (2003-5)